
Climate Data Management
System

Version 4.0

Robert Drach, Paul Dubois, Dean Williams

Program for Climate Model Diagnosis and
Intercomparison

Lawrence Livermore National Laboratory

November 2003

UCRL-JC-134897

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor the
University of California nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or precess
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial products, process, or service by
trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United
States Government or the University of California, and shall not be used for
advertising or product endorsement purposes.

Table of Contents

CHAPTER 1 Introduction 9

Overview 9
Variables 9
File I/O 10
Coordinate Axes 11
Attributes 13
Masked values 13
File Variables 14
Dataset Variables 17
Grids 17

Example: a curvilinear grid 18
Example: a generic grid 20

Regridding 22
CDMS Regridder 22
SCRIP Regridder 23

Time types 24
Plotting data 25
Databases 26

CHAPTER 2 CDMS Python Application
Programming Interface 29

Overview 29
Python types used in CDMS 30

A first example 31
cdms module 33

cdms module functions 33
Class Tags 40

CdmsObj 40
Attributes common to all CDMS objects 41
Getting and setting attributes 41

CoordinateAxis 41
CoordinateAxis types 42
CoordinateAxis Internal Attributes 42
Axis Constructors 43
CoordinateAxis Methods 44
Axis Methods, additional to CoordinateAxis methods 48
Axis Slice Operators 50

CdmsFile 51
CdmsFile Internal Attributes 51
CdmsFile Constructors 52
CdmsFile Methods 52
CDMS Datatypes 57

Database 57
Overview 58
Database Internal Attributes 59
Database Constructors 60
Database Methods 60
Searching a database 63
SearchResult Methods 65
ResultEntry Attributes 66
ResultEntry Methods 66
Accessing data 66
Examples of database searches 67

Dataset 68
Dataset Internal Attributes 68
Dataset Constructors 69
Open Modes 69
Dataset Methods 70

MV module 72
Variable Constructors in module MV 74
MV functions 75

 HorizontalGrid 78
 79
HorizontalGrid Internal Attributes 79
RectGrid Constructors 80
HorizontalGrid Methods 81
RectGrid Methods, additional to HorizontalGrid Methods 85

Variable 87
Variable Internal Attributes 88
Variable Constructors 89

Variable Methods 92
Variable Slice Operators 101
Index and Coordinate Intervals 101
Selectors 102
Selector keywords 103
Selector examples 105

Examples 106

CHAPTER 3 cdtime Module 111

Time types 111
Calendars 112
Time Constructors 112

Time Constructors 113

Relative Time 114
Relative Time Members 114

Component Time 115
Component Time Members 115

Time Methods 115
Time Methods 116

CHAPTER 4 Regridding Data 119

Overview 119
CDMS horizontal regridder 119
SCRIP horizontal regridder 121
Pressure-level regridder 124
Cross-section regridder 124

regrid module 125
CDMS horizontal regridder 125
CDMS Regridder Constructor 125
SCRIP Regridder 125
SCRIP Regridder Constructor 126

regridder functions 126
CDMS regridder functions 126
CDMS Regridder function 129
SCRIP Regridder functions 130

SCRIP Regridder functions 131

Examples 133
CDMS regridder 133
SCRIP regridder 137

CHAPTER 5 Plotting CDMS data in Python 139

Overview 139
Examples 139

Example: plotting a gridded variable 139
Example: using plot keywords. 140
Example: plotting a time-latitude slice 141
Example: plotting subsetted data 141

plot method 142
plot keywords 143

CHAPTER 6 Climate Data Markup Language
(CDML) 147

Introduction 147
Elements 148

CDML Tags 148

Special Characters 149
Special Character Encodings 149

Identifiers 150
CF Metadata Standard 150
CDML Syntax 150

Dataset Element 151
Dataset Attributes 151
Axis Element 153
Axis Attributes 153
partition attribute 155
Grid Element 156
RectGrid Attributes 157
Variable Element 157
Variable Attributes 158

Attribute Element 159

A Sample CDML Document 160

CHAPTER 7 CDMS Utilities 163

cdscan: Importing datasets into CDMS 163
Overview 163
cdscan Syntax 164
cdscan command options 165
Examples 169
File Formats 169
Name Aliasing 169

APPENDIX A CDMS Classes 171

APPENDIX B Version Notes 174

Version 4.0 174
Version 3.0 Overview 174
V3.0 Details 175

AbstractVariable 175
AbstractAxis 176
AbstractDatabase 176
Dataset 176
cdms module 176
CdmsFile 176
CDMSError 176
AbstractRectGrid 177
InternalAttributes 177
TransientVariable 177
MV 177

APPENDIX C cu Module 178

Slab 178

Slab Methods 179

cuDataset 180
cuDataset Methods 180

CHAPTER 1 Introduction
1.1 Overview

The Climate Data Management System is an object-oriented data
management system, specialized for organizing multidimensional, gridded
data used in climate analysis and simulation.

CDMS is implemented as part of the Climate Data Analysis Tool (CDAT),
which uses the Python language. The examples in this chapter assume some
familiarity with the language and the Python Numeric module (http://
numpy.sf.net). A number of excellent tutorials on Python are available in
books or on the Internet. For example, see http://python.org .

1.2 Variables

The basic unit of computation in CDMS is the variable. A variable is
essentially a multidimensional data array, augmented with a domain, a set of
attributes, and optionally a spatial and/or temporal coordinate system (see
“Coordinate Axes” on page 11). As a data array, a variable can be sliced to
obtain a portion of the data, and can be used in arithmetic computations. For
Climate Data Management System 9

Introduction

10
example, if u and v are variables representing the eastward and northward
components of wind speed, respectively, and both variables are functions of
time, latitude, and longitude, then the velocity for time 0 (first index) can be
calculated as

>>> from cdms import MV
>>> vel = MV.sqrt(u[0]**2 + v[0]**2)

This illustrates several points:

• Square brackets represent the slice operator. Indexing starts at 0, so u[0] selects
from variable u for the first timepoint. The result of this slice operation is
another variable. The slice operator can be multidimensional, and follows the
syntax of Numeric Python arrays. In this example, u[0:10,:,1] would retrieve
data for the first ten timepoints, at all latitudes, for the second longitude.

• Variables can be used in computation. ‘**’ is the Python exponentiation opera-
tor.

• Arithmetic functions are defined in the cdms.MV module.

• Operations on variables carry along the corresponding metadata where applica-
ble. In the above example, vel has the same latitude and longitude coordinates
as u and v, and the time coordinate is the first time of u and v.

1.3 File I/O

A variable can be obtained from a file or collection of files, or can be gener-
ated as the result of a computation. Files can be in any of the self-describing
formats netCDF, HDF, GrADS/GRIB (GRIB with a GrADS control file), or
PCMDI DRS. (HDF and DRS support is optional, and is configured at the
time CDAT is installed.) For instance, to read data from file sample.nc into
variable u:

>>> import cdms
>>> f = cdms.open(’sample.nc’)
>>> u = f(’u’)

Data can be read by index or by world coordinate values. The following
reads the n-th timepoint of u (the syntax slice(i,j) refers to indices k such
that i <= k < j):
Climate Data Management System

Coordinate Axes
>>> u0 = f(’u’,time=slice(n,n+1))

To read u at time 366.0:

>>> u1 = f(’u’,time=366.)

A variable can be written to a file with the write function:

>>> g = cdms.open(’sample2.nc’,’w’)
>>> g.write(u)
<Variable: u, file: sample2.nc, shape: (1, 16, 32)>
>>> g.close()

1.4 Coordinate Axes

A coordinate axis is a variable that represents coordinate information. Typi-
cally an axis is associated with one or more variables in a file or dataset, to
represent the indexing and/or spatiotemporal coordinate system(s) of the
variable(s).

Often in climate applications an axis is a one-dimensional variable whose
values are floating-point and strictly monotonic. In some cases an axis can
be multidimensional (see “Grids” on page 17). If an axis is associated with
one of the canonical types latitude, longitude, level, or time, then the axis is
called spatiotemporal.

The shape and physical ordering of a variable is represented by the vari-
able’s domain, an ordered tuple of one-dimensional axes. In the previous
example, the domain of the variable u is the tuple (time, latitude, longitude).
This indicates the order of the dimensions, with the slowest-varying dimen-
sion listed first (time). The domain may be accessed with the getAxisList
method:

>>> s.getAxisList()
[id: lat
 Designated a latitude axis.
 units: degrees_north
 Length: 64
 First: -87.8637970305
 Last: 87.8637970305
 Other axis attributes:
Climate Data Management System 11

Introduction

12
 long_name: latitude
 axis: Y
 Python id: 833efa4
, id: lon
 Designated a longitude axis.
 units: degrees_east
 Length: 128
 First: 0.0
 Last: 357.1875
 Other axis attributes:
 modulo: 360.0
 topology: circular
 long_name: longitude
 axis: X
 Python id: 833f174
]

In the above example, the domain elements are axes that are also spatiotem-
poral. In general it is not always the case that an element of a domain is spa-
tiotemporal:

• An axis in the domain of a variable need not be spatiotemporal. For example, it
may represent a range of indices, an index coordinate system.

• The latitude and/or longitude coordinate axes associated with a variable need
not be elements of the domain. In particular this will be true if the variable is
defined on a non-rectangular grid (see “Grids” on page 17).

As previously noted, a spatial and/or temporal coordinate system may be
associated with a variable. The methods getLatitude, getLongitude,
getLevel, and getTime return the associated coordinate axes. For example:

>>> t = u.getTime()
>>> print t[:]
[0., 366., 731.,]
>>> print t.units
‘days since 2000-1-1’
Climate Data Management System

Attributes
1.5 Attributes

As mentioned above, variables can have associated attributes, name-value
pairs. In fact, nearly all CDMS objects can have associated attributes, which
are accessed using the Python dot notation:

>>> u.units=’m/s’
>>> print u.units
m/s

Attribute values can be strings, scalars, or 1-D Numeric arrays.

When a variable is written to a file, not all the attributes are written. Some
attributes, called internal attributes, are used for bookkeeping, and are not
intended to be part of the external file representation of the variable. In con-
trast, external attributes are written to an output file along with the variable.
By default, when an attribute is set, it is treated as external. Every variable
has a field attributes, a Python dictionary that defines the external
attributes:

>>> print u.attributes.keys()
[’datatype’, ’name’, ’missing_value’, ’units’]

The Python dir command lists the internal attribute names:

>>> dir(u)
[’_MaskedArray__data’, ’_MaskedArray__fill_value’, ..., ’id’,

’parent’]

In general internal attributes should not be modified directly. One exception
is the id attribute, the name of the variable. It is used in plotting and I/O, and
can be set directly.

1.6 Masked values

Optionally, variables have a mask that represents where data are miss-
ing. If present, the mask is an array of ones and zeros having the shape of
the data array. A mask value of one indicates that the corresponding data
array element is missing or invalid.
Climate Data Management System 13

Introduction

14
Arithmetic operations in CDMS take missing data into account. The same is
true of the functions defined in the cdms.MV module. For example:

>>> a = MV.array([1,2,3]) # Create array a, with no mask
>>> b = MV.array([4,5,6]) # Same for b
>>> a+b
variable_13
array([5,7,9,])
>>> a[1]=MV.masked # Mask the second value of a
>>> a.mask() # View the mask
[0,1,0,]
>>> a+b # The sum is masked also
variable_14
array(
 data = [5,0,9,],
 mask = [0,1,0,],
 fill_value=[0,]
)

When data is read from a file, the result variable is masked if the file vari-
able has a missing_value attribute. The mask is set to one for those ele-
ments equal to the missing value, zero elsewhere. If no such attribute is
present in the file, the result variable is not masked.

When a variable with masked values is written to a file, data values with a
corresponding mask value of one are set to the value of the variable’s
missing_value attribute. The data and missing_value attribute are then
written to the file.

Masking is covered in Section 2.9. See also the documentation of the
Python Numeric and MA modules, on which cdms.MV is based, at http://
numpy.sourceforge.net .

1.7 File Variables

A variable can be obtained either from a file, a collection of files, or as the
result of computation. Correspondingly there are three types of variables in
CDMS:
Climate Data Management System

File Variables
• A file variable is a variable associated with a single data file. Setting or refer-
encing a file variable generates I/O operations.

• A dataset variable is a variable associated with a collection of files. Reference
to a dataset variable reads data, possibly from multiple files. Dataset variables
are read-only.

• A transient variable is an ‘in-memory’ object not associated with a file or
dataset. Transient variables result from a computation or I/O operation.

Typical use of a file variables is to inquire information about the variable in
a file without actually reading the data for the variables. A file variable is
obtained by applying the slice operator [] to a file, passing the name of the
variable, or by calling the getVariable function. Note that obtaining a file
variable does not actually read the data array:

>>> f = cdms.open(’sample.nc’,’r+’)
>>> u = f.getVariable(’u’) # or u=f[’u’]
>>> u.shape
(3, 16, 32)

File variables are also useful for fine-grained I/O. They behave like tran-
sient variables, but operations on them also affect the associated file. Spe-
cifically:

• slicing a file variable reads data,

• setting a slice writes data,

• referencing an attribute reads the attribute,

• setting an attribute writes the attribute,

• and calling a file variable like a function reads data associated with the variable:

>>> f = cdms.open(’sample.nc’,’r+’) # Open read/write
>>> uvar = f[’u’] # Note square brackets
>>> uvar.shape
(3, 16, 32)
>>> u0 = uvar[0] # Reads data from sample.nc
>>> u0.shape
(16, 32)
>>> uvar[1]=u0 # Writes data to sample.nc
>>> uvar.units # Reads the attribute
’m/s’
>>> uvar.units=’meters/second’ # Writes the attribute
Calling a variable like a function reads data
>>> u24 = uvar(time=24.0)
Climate Data Management System 15

Introduction

16
>>> f.close() # Save changes to sample.nc (I/O may be buffered)

In an interactive application, the type of variable can be determined simply
by printing the variable:

>>> rlsf # Transient variable
rls
array(
 array (4,48,96) , type = f, has 18432 elements)
>>> rlsg # Dataset variable
<Variable: rls, dataset: mri_perturb, shape: (4, 46, 72)>
>>> prc # File variable
<Variable: prc, file: testnc.nc, shape: (16, 32, 64)>

Note that the data values themselves are not printed. For transient variables,
the data is printed only if the size of the array is less than the print limit.
This value can be set with the function MV.set_print_limit to force the data
to be printed:

>>> smallvar.size() # Number of elements
20
>>> MV.get_print_limit() # Current limit
300
>>> smallvar
small variable
array(
 [[0., 1., 2., 3.,]
 [4., 5., 6., 7.,]
 [8., 9., 10., 11.,]
 [12., 13., 14., 15.,]
 [16., 17., 18., 19.,]])

>>> largevar.size()
400
>>> largevar
large variable
array(
 array (20,20) , type = d, has 400 elements)

>>> MV.set_print_limit(500) # Reset the print limit
>>> largevar
large variable
array(
 [[0., 1., 2., 3., 4., 5., 6., 7., 8., 9.,

10., 11., 12., 13., 14., 15., 16., 17., 18., 19.,]
 ...])
Climate Data Management System

Dataset Variables
The datatype of the variable is determined with the typecode function:

>>> x.typecode()
’d’

1.8 Dataset Variables

The third type of variable, a dataset variable, is associated with a dataset, a
collection of files that is treated as a single file. A dataset is created with the
cdscan utility. This generates an XML metafile that describes how the files
are organized and what metadata are contained in the files. In a climate sim-
ulation application, a dataset typically represents the data generated by one
run of a general circulation or coupled ocean-atmosphere model.

For example, suppose data for variables u and v are stored in six files:
u_2000.nc, u_2001.nc, u_2002.nc, v_2000.nc, v_2001.nc, and v_2002.nc. A
metafile can be generated with the command:

% cdscan -x cdsample.xml [uv]*.nc

The metafile cdsample.xml is then used like an ordinary data file:

>>> f = cdms.open(’cdsample.xml’)
>>> u = f(’u’)
>>> u.shape
(3, 16, 32)

1.9 Grids

A latitude-longitude grid represents the coordinate information associated
with a variable. A grid encapsulates:

• latitude, longitude coordinates

• grid cell boundaries

• area weights
Climate Data Management System 17

Introduction

18
CDMS defines a rich set of grid types to represent the variety of coordinate
systems used in climate model applications. Grids can be categorized as
rectangular or nonrectangular.

• A rectangular grid has latitude and longitude axes that are one-dimensional,
with strictly monotonic values. The grid is essentially the Cartesian product of
the axes. If either criterion is not met, the grid is nonrectangular.

CDMS supports two types of nonrectangular grid:

• A curvilinear grid consists of a latitude and longitude axis, each of which is a
two-dimensional coordinate axis. Curvilinear grids are often used in ocean
model applications.

• A generic grid consists of a latitude and longitude axis, each of which is an aux-
iliary one-dimensional coordinate axis. An auxiliary axis has values that are not
necessarily monotonic. As the name suggests, generic grids can represent virtu-
ally any type of grid. However, it is more difficult to determine adjacency rela-
tionships between grid points.

1.9.1 Example: a curvilinear grid

In this example, variable sample is defined on a 128x192 curvilinear
grid. Note that:

• The domain of variable sample is (y,x) where y and x are index coordinate axes.

• The curvilinear grid associated with sample consists of axes (lat, lon), each a
two-dimensional coordinate axis.

• lat and lon each have domain (y,x)

>>> f = cdms.open('sampleCurveGrid.nc')

lat and lon are coordinate axes, but are grouped
with data variables
>>> f.variables.keys()
['lat', 'sample', 'bounds_lon', 'lon', 'bounds_lat']

y and x are index coordinate axes
>>> f.axes.keys()
['y', 'x', 'nvert']

Read data for variable sample
>>> sample = f('sample')
Climate Data Management System

Grids
The associated grid g is curvilinear
>>> g = sample.getGrid()
>>> g
<TransientCurveGrid, id: grid_1, shape: (128, 192)>

The domain of the variable consists of index axes
>>> sample.getAxisIds()
['y', 'x']

Get the coordinate axes associated with the grid
>>> lat = g.getLatitude() # or sample.getLatitude()
>>> lon = g.getLongitude() # or sample.getLongitude()

lat and lon have the same domain, a subset of
the domain of ‘sample’
>>> lat.getAxisIds()
['y', 'x']

lat and lon are variables ...
>>> lat.shape
(128, 192)
>>> lat
lat
array(
 array (128,192) , type = d, has 24576 elements)

... so can be used in computation
>>> lat_in_radians = lat*Numeric.pi/180.0
Climate Data Management System 19

Introduction

20
>>>

1.9.2 Example: a generic grid

In this example variable zs is defined on a generic grid. Figure 2 illus-
trates the grid, in this case a ‘geodesic’ grid.

>>> f.variables.keys()
['lat', 'bounds_lon', 'lon', 'zs', 'bounds_lat']
>>> f.axes.keys()
['cell', 'nvert']
>>> zs = f('zs')
>>> g = zs.getGrid()
>>> g
<TransientGenericGrid, id: grid_1, shape: (2562,)>
>>> lat = g.getLatitude()
>>> lon = g.getLongitude()
>>> lat.shape
(2562,)
>>> lon.shape
(2562,)

variable zs is defined in terms of a single index coordinate

FIGURE 1. Curvilinear grid

sample Sample variable
Max 0 Min 0

180 185 190 195 200 205 210 215 220 225 230 235 240
30

32

34

36

38

40

42

44

46

48

50

52

54

56

58

60
Climate Data Management System

Grids
axis, ‘cell’
>>> zs.shape
(2562,)
>>> zs.getAxisIds()
['cell']

lat and lon are also defined in terms of the ‘cell’ axis
>>> lat.getAxisIds()
['cell']

lat and lon are one-dimensional, ‘auxiliary’ coordinate
axes: values are not monotonic
>>> lat.__class__
<class cdms.auxcoord.TransientAuxAxis1D at 0x82eea24>

Generic grids can be used to represent any of the grid types. The method
toGenericGrid can be applied to any grid to convert it to a generic repre-
sentation. Similarly, a rectangular grid can be represented as curvilinear.
The method toCurveGrid is used to convert a non-generic grid to curvilin-
ear representation:

>>> import cdms
>>> f = cdms.open('clt.nc')
>>> clt = f('clt')
>>> rectgrid = clt.getGrid()

FIGURE 2. Generic grid

Orography
Max 0 Min 0

30 40 50 60 70 80 90 100 110 120 130 140 150
-30

-25

-20

-15

-10

-5

0

5

10

15

20

25

30
Climate Data Management System 21

Introduction

22
>>> rectgrid.shape
(46, 72)
>>> curvegrid = rectgrid.toCurveGrid()
>>> curvegrid
<TransientCurveGrid, id: grid_1, shape: (46, 72)>
>>> genericgrid = curvegrid.toGenericGrid()
>>> genericgrid
<TransientGenericGrid, id: grid_1, shape: (3312,)>
>>>

1.10 Regridding

Regridding is the process of mapping variables from one grid to
another. CDMS supports two forms of regridding. Which one you use
depends on the class of grids being transformed:

• To interpolate from one rectangular grid to another, use the built-in CDMS
regridder. CDMS also has built-in regridders to interpolate from one set of pres-
sure levels to another, or from one vertical cross-section to another.

• To interpolate from any lat-lon grid, rectangular or non-rectangular, use the
SCRIP regridder.

1.10.1 CDMS Regridder

The built-in CDMS regridder is used to transform data from one rect-
angular grid to another. For example, to regrid variable u (from a rectangu-
lar grid) to a 96x192 rectangular Gaussian grid:

>>> u = f(’u’)
>>> u.shape
(3, 16, 32)
>>> t63_grid = cdms.createGaussianGrid(96)
>>> u63 = u.regrid(t63_grid)
>>> u63.shape
(3, 96, 192)

To regrid a variable uold to the same grid as variable vnew:

>>> uold.shape
(3, 16, 32)
>>> vnew.shape
(3, 96, 192)
>>> t63_grid = vnew.getGrid() # Obtain the grid for vnew
>>> u63 = u.regrid(t63_grid)
Climate Data Management System

Regridding
>>> u63.shape
(3, 96, 192)

1.10.2 SCRIP Regridder

To interpolate between any lat-lon grid types, the SCRIP regridder
may be used. The SCRIP package was developed at Los Alamos National
Laboratory (http://climate.lanl.gov/Software/SCRIP/). SCRIP is written in
Fortran 90, and must be built and installed separately from the CDAT/
CDMS installation.

The steps to regrid a variable are:

(external to CDMS)

1. Obtain or generate the grids, in SCRIP netCDF format.

2. Run SCRIP to generate a remapping file.

(in CDMS)

3. Read the regridder from the SCRIP remapping file.

4. Call the regridder with the source data, returning data on the target grid.

Steps 1 and 2 need only be done once. The regridder can be used as often as
necessary.

For example, suppose the source data on a T42 grid is to be mapped to a
POP curvilinear grid. Assume that SCRIP generated a remapping file
named ‘rmp_T42_to_POP43_conserv.nc’:

Import regrid package for regridder functions
import regrid, cdms

Get the source variable
f = cdms.open('sampleT42Grid.nc')
dat = f('src_array')
f.close()

Read the regridder from the remapper file
remapf = cdms.open('rmp_T42_to_POP43_conserv.nc')
regridf = regrid.readRegridder(remapf)
remapf.close()
Climate Data Management System 23

Introduction

24
Regrid the source variable
popdat = regridf(dat)

Regridding is discussed in Chapter 4.

1.11 Time types

CDMS provides extensive support for time values in the cdtime mod-
ule. cdtime also defines a set of calendars, specifying the number of days in
a given month.

Two time types are available: relative time and component time. Relative
time is time relative to a fixed base time. It consists of:

• a units string, of the form “units since basetime”, and

• a floating-point value

For example, the time “28.0 days since 1996-1-1” has value=28.0, and
units=”days since 1996-1-1”. To create a relative time type:

>>> import cdtime
>>> rt = cdtime.reltime(28.0, "days since 1996-1-1")
>>> rt
28.00 days since 1996-1-1
>>> rt.value
28.0
>>> rt.units
’days since 1996-1-1’

A component time consists of the integer fields year, month, day, hour,
minute, and the floating-point field second. For example:

>>> ct = cdtime.comptime(1996,2,28,12,10,30)
>>> ct
1996-2-28 12:10:30.0
>>> ct.year
1996
>>> ct.month
2

Climate Data Management System

Plotting data
The conversion functions tocomp and torel convert between the two repre-
sentations. For instance, suppose that the time axis of a variable is repre-
sented in units “days since 1979”. To find the coordinate value
corresponding to January 1, 1990:

>>> ct = cdtime.comptime(1990,1)
>>> rt = ct.torel("days since 1979")
>>> rt.value
4018.0

Time values can be used to specify intervals of time to read. The syntax
time=(c1,c2) specifies that data should be read for times t such that
c1<=t<=c2:

>>> c1 = cdtime.comptime(1990,1)
>>> c2 = cdtime.comptime(1991,1)
>>> ua = f[’ua’]
>>> ua.shape
(480, 17, 73, 144)
>>> x = ua.subRegion(time=(c1,c2))
>>> x.shape
(12, 17, 73, 144)

or string representations can be used:

>>> x = ua.subRegion(time=(’1990-1’,’1991-1’))

Time types are described in Chapter 3.

1.12 Plotting data

Data read via the CDMS Python interface can be plotted using the vcs
module. This module, part of the Climate Data Analysis Tool (CDAT) is
documented in the VCS reference manual. The vcs module provides access
to the functionality of the VCS visualization program.

To generate a plot:

• Initialize a canvas with the vcs init routine.

• Plot the data using the canvas plot routine.

For example:
Climate Data Management System 25

Introduction

26
>>> import cdms, vcs
>>> f = cdms.open(’sample.nc’)
>>> f[’time’][:] # Print the time coordinates
[0., 6., 12., 18., 24., 30., 36., 42., 48., 54., 60., 66., 72.,

78., 84., 90.,]
>>> precip = f(’prc’, time=24.0) # Read precip data
>>> precip.shape
(1, 32, 64)
>>> w = vcs.init() # Initialize a canvas
’Template’ is currently set to P_default.
Graphics method ’Boxfill’ is currently set to Gfb_default.
>>> w.plot(precip) # Generate a plot
(generates a boxfill plot)

By default for rectangular grids, a boxfill plot of the lat-lon slice is pro-
duced. Since variable precip includes information on time, latitude, and
longitude, the continental outlines and time information are also plotted. If
the variable were on a non-rectangular grid, the plot would be a ‘meshfill’
plot.

The plot routine has a number of options for producing different types of
plots, such as isofill and x-y plots. See Chapter 5 for details.

1.13 Databases

Datasets can be aggregated together into hierarchical collections,
called databases. In typical usage, a program:

• connects to a database

• searches for data

• opens a dataset

• accesses data

Databases add the ability to search for data and metadata in a distributed
computing environment. At present CDMS supports one particular type of
database, based on the Lightweight Directory Access Protocol (LDAP).

Here is an example of accessing data via a database:

>>> db = cdms.connect() # Connect to the default database.
Climate Data Management System

Databases
>>> f = db.open(’ncep_reanalysis_mo’) # Open a dataset.
>>> f.variables.keys() # List the variables in the dataset.
[’ua’, ’evs’, ’cvvta’, ’tauv’, ’wap’, ’cvwhusa’, ’rss’, ’rls’, ...
’prc’, ’ts’, ’va’]

Databases are discussed further in Section 2.7.
Climate Data Management System 27

Introduction

28
 Climate Data Management System

CHAPTER 2 CDMS Python
Application
Programming Interface
2.1 Overview

This chapter describes the CDMS Python application programming
interface (API). Python is a popular public-domain, object-oriented lan-
guage. Its features include support for object-oriented development, a rich
set of programming constructs, and an extensible architecture. CDMS itself
is implemented in a mixture of C and Python. In this chapter the assumption
is made that the reader is familiar with the basic features of the Python lan-
guage.

Python supports the notion of a module, which groups together associated
classes and methods. The import command makes the module accessible to
an application. This chapter documents the cdms, cdtime, and regrid mod-
ules.

The chapter sections correspond to the CDMS classes. Each section
contains tables describing the class internal (non-persistent) attributes, con-
structors (functions for creating an object), and class methods (functions). A
method can return an instance of a CDMS class, or one of the Python types:
Climate Data Management System 29

CDMS Python Application Programming Interface

30
Table 2.1 Python types used in CDMS

Type Description

Array Numeric or masked multidimensional data array. All ele-
ments of the array are of the same type. Defined in the
Numeric and MA modules.

Comptime Absolute time value, a time with representation (year,
month, day, hour, minute, second). Defined in the
cdtime module. cf. reltime

Dictionary An unordered collection of objects, indexed by key. All
dictionaries in CDMS are indexed by strings, e.g.:

axes[’time’]

Float Floating-point value.

Integer Integer value.

List An ordered sequence of objects, which need not be of
the same type. New members can be inserted or
appended. Lists are denoted with square brackets, e.g.,

[1, 2.0, ’x’, ’y’]

None No value returned.

Reltime Relative time value, a time with representation (value,
“units since basetime”). Defined in the cdtime module.
cf. comptime

Tuple An ordered sequence of objects, which need not be of
the same type. Unlike lists, tuples elements cannot be
inserted or appended. Tuples are denoted with parenthe-
ses, e.g.,

(1, 2.0, ’x’, ’y’)
Climate Data Management System

A first example
2.2 A first example

The following Python script reads January and July monthly tempera-
ture data from an input dataset, averages over time, and writes the results to
an output file. The input temperature data is ordered (time, latitude, longi-
tude).

 1 #!/usr/bin/env python
 2 import cdms
 3 from cdms import MV
 4 jones = cdms.open(’/pcmdi/cdms/obs/jones_mo.nc’)
 5 tasvar = jones[’tas’]
 6 jans = tasvar[0::12]
 7 julys = tasvar[6::12]
 8 janavg = MV.average(jans)
 9 janavg.id = "tas_jan"
 10 janavg.long_name = "mean January surface temperature"
 11 julyavg = MV.average(julys)
 12 julyavg.id = "tas_jul"
 13 julyavg.long_name = "mean July surface temperature"
 14 out = cdms.open(’janjuly.nc’,’w’)
 15 out.write(janavg)
 16 out.write(julyavg)
 17 out.comment = "Average January/July from Jones dataset"
 18 jones.close()
 19 out.close()

Line Notes

 2,3 Makes the CDMS and MV modules available. MV defines arithmetic
functions.

 4 Opens a netCDF file read-only. The result jones is a dataset object.

 5 Gets the surface air temperature variable. ’tas’ is the name of the
variable in the input dataset. This does not actually read the data.
Climate Data Management System 31

CDMS Python Application Programming Interface

32
 6 Read all January monthly mean data into a variable jans. Variables
can be sliced like arrays. The slice operator [0::12] means ‘take
every 12th slice from dimension 0, starting at index 0 and ending at
the last index.’ If the stride 12 were omitted, it would default to 1.

Note that the variable is actually 3-dimensional. Since no slice is
specified for the second or third dimensions, all values of those
dimensions are retrieved. The slice operation could also have been
written [0::12, : , :].

Also note that the same script works for multi-file datasets. CDMS
opens the needed data files, extracts the appropriate slices, and con-
catenates them into the result array.

 7 Reads all July data into a masked array julys.

 8 Calculate the average January value for each grid zone. Any missing
data is handled automatically.

9,10 Set the variable id and long_name attributes. The id is used as the
name of the variable when plotted or written to a file.

 14 Create a new netCDF output file named ’janjuly.nc’ to hold the
results.

15 Write the January average values to the output file. The variable will
have id “tas_jan” in the file.

write is a utility function which creates the variable in the file, then
writes data to the variable. A more general method of data output is
first to create a variable, then set a slice of the variable.

Note that janavg and julavg have the same latitude and longitude
information as tasvar. It is carried along with the computations.

17 Set the global attribute ’comment’.

18 Close the output file.

Line Notes
Climate Data Management System

cdms module
2.3 cdms module

The cdms module is the Python interface to CDMS. The objects and
methods in this chapter are made accessible with the command:

import cdms

The functions described in this section are not associated with a class.
Rather, they are called as module functions, e.g.,

file = cdms.open(’sample.nc’)

Table 2.2 cdms module functions

Type Definition

Variable asVariable(s)

Transform s into a transient variable.

s is a masked array, Numeric array, or Variable. If s is already a
transient variable, s is returned.

See also: isVariable.

Axis createAxis(data, bounds=None)

Create a one-dimensional coordinate Axis, which is not asso-
ciated with a file or dataset. This is useful for creating a grid
which is not contained in a file or dataset.

data is a one-dimensional, monotonic Numeric array.

bounds is an array of shape (len(data),2), such that for all i,
data[i] is in the range [bounds[i,0],bounds[i,1]]. If bounds is
not specified, the default boundaries are generated at the mid-
points between the consecutive data values, provided that the
autobounds mode is ‘on’ (the default). See setAutoBounds.

Also see: CdmsFile.createAxis
Climate Data Management System 33

CDMS Python Application Programming Interface

34
Axis createEqualAreaAxis(nlat)

Create an equal-area latitude axis. The latitude values range
from north to south, and for all axis values x[i], sin(x[i])-
sin(x[i+1]) is constant.

nlat is the axis length.

The axis is not associated with a file or dataset.

Axis createGaussianAxis(nlat)

Create a Gaussian latitude axis. Axis values range from north
to south.

nlat is the axis length.

The axis is not associated with a file or dataset.

RectGrid createGaussianGrid(nlats, xorigin=0.0, order=”yx”)

Create a Gaussian grid, with shape (nlats, 2*nlats).

nlats is the number of latitudes.

xorigin is the origin of the longitude axis.

order is either “yx” (lat-lon, default) or “xy” (lon-lat)

Table 2.2 cdms module functions

Type Definition
Climate Data Management System

cdms module
RectGrid createGenericGrid(latArray, lonArray, lat-
Bounds=None, lonBounds=None, order="yx",
mask=None)

Create a generic grid, that is, a grid which is not typed as
Gaussian, uniform, or equal-area. The grid is not associated
with a file or dataset.

latArray is a NumPy array of latitude values.

lonArray is a NumPy array of longitude values

latBounds is a NumPy array having shape (len(latArray),2), of
latitude boundaries.

lonBounds is a NumPy array having shape (len(lonArray),2),
of longitude boundaries.

order is a string specifying the order of the axes, either “yx”
for (latitude, longitude), or “xy” for the reverse.

mask (optional) is an integer-valued NumPy mask array, hav-
ing the same shape and ordering as the grid.

RectGrid createGlobalMeanGrid(grid)

Generate a grid for calculating the global mean via a regrid-
ding operation. The return grid is a single zone covering the
range of the input grid.

grid is a RectGrid.

Table 2.2 cdms module functions

Type Definition
Climate Data Management System 35

CDMS Python Application Programming Interface

36
RectGrid createRectGrid(lat, lon, order, type="generic",
mask=None)

Create a rectilinear grid, not associated with a file or dataset.
This might be used as the target grid for a regridding opera-
tion.

lat is a latitude axis, created by cdms.createAxis.

lon is a longitude axis, created by cdms.createAxis.

order is a string with value “yx” (the first grid dimension is
latitude) or “xy” (the first grid dimension is longitude).

type is one of ’gaussian’,’uniform’,’equalarea’,or ’generic’

If specified, mask is a two-dimensional, logical Numeric array
(all values are zero or one) with the same shape as the grid.

RectGrid createUniformGrid(startLat, nlat, deltaLat, start-
Lon, nlon, deltaLon, order="yx", mask=None)

Create a uniform rectilinear grid. The grid is not associated
with a file or dataset. The grid boundaries are at the midpoints
of the axis values.

startLat is the starting latitude value.

nlat is the number of latitudes. If nlat is 1, the grid latitude
boundaries will be startLat +/- deltaLat/2.

deltaLat is the increment between latitudes.

startLon is the starting longitude value.

nlon is the number of longitudes. If nlon is 1, the grid longi-
tude boundaries will be startLon +/- deltaLon/2.

deltaLon is the increment between longitudes.

order is a string with value “yx” (the first grid dimension is
latitude) or “xy” (the first grid dimension is longitude).

If specified, mask is a two-dimensional, logical Numeric array
(all values are zero or one) with the same shape as the grid.

Table 2.2 cdms module functions

Type Definition
Climate Data Management System

cdms module
Axis createUniformLatitudeAxis(startLat, nlat, deltaLat)

Create a uniform latitude axis. The axis boundaries are at the
midpoints of the axis values. The axis is designated as a circu-
lar latitude axis.

startLat is the starting latitude value.

nlat is the number of latitudes.

deltaLat is the increment between latitudes.

RectGrid createZonalGrid(grid)

Create a zonal grid. The output grid has the same latitude as
the input grid, and a single longitude. This may be used to cal-
culate zonal averages via a regridding operation.

grid is a RectGrid.

Axis createUniformLongitudeAxis(startLon, nlon, delta-
Lon)

Create a uniform longitude axis. The axis boundaries are at the
midpoints of the axis values. The axis is designated as a circu-
lar longitude axis.

startLon is the starting longitude value.

nlon is the number of longitudes.

deltaLon is the increment between longitudes.

Variable createVariable(array, typecode=None, copy=0,
savespace=0, mask=None, fill_value=None,
grid=None, axes=None, attributes=None,
id=None)

This function is documented in Table 2.34 on page 89.

Integer getAutoBounds()

Get the current autobounds mode. Returns 1 if the autobounds
mode is on, 0 otherwise. See setAutoBounds.

Table 2.2 cdms module functions

Type Definition
Climate Data Management System 37

CDMS Python Application Programming Interface

38
Integer isVariable(s)

Return 1 if s is a variable, 0 otherwise. See also: asVariable.

Dataset
or
CdmsFile

open(url,mode='r')

Open or create a Dataset or CdmsFile.

url is a Uniform Resource Locator, referring to a cdunif or
XML file. If the URL has the extension '.xml' or '.cdml', a
Dataset is returned, otherwise a CdmsFile is returned. If the
URL protocol is 'http', the file must be a '.xml' or '.cdml' file,
and the mode must be 'r'. If the protocal is 'file' or is omitted, a
local file or dataset is opened.

mode is the open mode. See Table 2.24 on page 69.

Example: Open an existing dataset:

f = cdms.open(“sampleset.xml”)

Example: Create a netCDF file:

f = cdms.open(“newfile.nc”,’w’)

List order2index (axes, orderstring)

Find the index permutation of axes to match order. Return a
list of indices

axes is a list of axis objects.

orderstring is defined as in orderparse.

Table 2.2 cdms module functions

Type Definition
Climate Data Management System

cdms module
List orderparse(orderstring)

Parse an order string. Returns a list of axes specifiers.

orderstring consists of:

• Letters t, x, y, z meaning time, longitude, latitude, level

• Numbers 0-9 representing position in axes

• Dash (-) meaning insert the next available axis here.

• The ellipsis ... meaning fill these positions with any
remaining axes.

• (name) meaning an axis whose id is name

None setAutoBounds(mode)

Set autobounds mode.

If mode is ’on’ or 1 (the default), the getBounds method will
automatically generate boundary information for an axis or
grid, if the boundaries are not explicitly defined.

If mode is ’off’ or 0, and no boundary data is explicitly
defined, the bounds will NOT be generated; the getBounds
method will return None for the boundaries.

None setClassifyGrids(mode)

Set the grid classification mode. This affects how grid type is
determined, for the purpose of generating grid boundaries.

If mode is ’on’ (the default), grid type is determined by a grid
classification method, regardless of the value of grid.get-
Type().

If mode is ’off’, the value of grid.getType() determines the
grid type

Table 2.2 cdms module functions

Type Definition
Climate Data Management System 39

CDMS Python Application Programming Interface

40
2.4 CdmsObj

A CdmsObj is the base class for all CDMS database objects. At the
application level, CdmsObj objects are never created and used directly.
Rather the subclasses of CdmsObj (Dataset, Variable, Axis, etc.) are the
basis of user application programming.

All objects derived from CdmsObj have a special attribute .attributes. This
is a Python dictionary, which contains all the external (persistent) attributes
associated with the object. This is in contrast to the internal, non-persistent
attributes of an object, which are built-in and predefined. When a CDMS

None writeScripGrid(path, grid, gridTitle=None)

Write a grid to a SCRIP grid file.

path is a string, the path of the SCRIP file to be created.

grid is a CDMS grid object. It may be rectangular.

gridTitle is a string ID for the grid.

Table 2.3 Class Tags

Tag Class

'axis' Axis

’database’ Database

'dataset' Dataset, CdmsFile

'grid' RectGrid

'variable' Variable

'xlink' Xlink

Table 2.2 cdms module functions

Type Definition
Climate Data Management System

CoordinateAxis
object is written to a file, the external attributes are written, but not the
internal attributes.

Example: get a list of all external attributes of obj.

extatts = obj.attributes.keys()

All attributes may be accessed and set using the Python dot notation (‘.’)

2.5 CoordinateAxis

A CoordinateAxis is a variable that represents coordinate informa-
tion. It may be contained in a file or dataset, or may be transient (memory-
resident). Setting a slice of a file CoordinateAxis writes to the file, and ref-

Table 2.4 Attributes common to all CDMS objects

Type Name Definition

Dictionary attributes External attribute dictionary for this object.

Table 2.5 Getting and setting attributes

Type Definition

Various value = obj.attname

 Get an internal or external attribute value. If the attribute

is external, it is read from the database. If the attribute is not
already in the database, it is created as an external attribute.
Internal attributes cannot be created, only referenced.

obj.attname = value

 Set an internal or external attribute value. If the attribute
is external, it is written to the database.
Climate Data Management System 41

CDMS Python Application Programming Interface

42

-

-

erencing a file CoordinateAxis slice reads data from the file. Axis objects
are also used to define the domain of a Variable.

CDMS defines several different types of CoordinateAxis objects. Table 2.9
on page 44 documents methods that are common to all CoordinateAxis
types. Table 2.10 on page 48 specifies methods that are unique to 1D Axis
objects.

An axis in a CdmsFile may be designated the ‘unlimited’ axis, meaning that
it can be extended in length after the initial definition. There can be at most
one unlimited axis associated with a CdmsFile.

Table 2.6 CoordinateAxis types

Type Definition

CoordinateAxis A variable that represents coordinate information. Has sub-
types Axis2D and AuxAxis1D.

Axis A one-dimensional coordinate axis whose values are strictly
monotonic. Has subtypes DatasetAxis, FileAxis, and Transien
tAxis. May be an index axis, mapping a range of integers to
the equivalent floating point value. If a latitude or longitude
axis, may be associated with a RectGrid.

Axis2D A two-dimensional coordinate axis, typically a latitude or lon
gitude axis related to a CurvilinearGrid. Has subtypes
DatasetAxis2D, FileAxis2D, and TransientAxis2D.

AuxAxis1D A one-dimensional coordinate axis whose values need not be
monotonic. Typically a latitude or longitude axis associated
with a GenericGrid. Has subtypes DatasetAuxAxis1D,
FileAuxAxis1D, and TransientAuxAxis1D.

Table 2.7 CoordinateAxis Internal Attributes

Type Name Definition

Dictionary attributes External attribute dictionary.

String id CoordinateAxis identifer.
Climate Data Management System

CoordinateAxis
Dataset parent The dataset which contains the variable.

Tuple shape The length of each axis.

Table 2.8 Axis Constructors

cdms.createAxis(data, bounds=None)

Create an axis which is not associated with a dataset or file. See Table 2.2 on
page 33.

Dataset.createAxis(name,ar)

Create an Axis in a Dataset. (This function is not yet implemented.)

CdmsFile.createAxis(name,ar,unlimited=0)

Create an Axis in a CdmsFile.

name is the string name of the Axis.

ar is a 1-D data array which defines the Axis values. It may have the value
None if an unlimited axis is being defined.

At most one Axis in a CdmsFile may be designated as being ’unlimited’,
meaning that it may be extended in length. To define an axis as unlimited,
either:

• set ar to None, and leave unlimited undefined, or

• set ar to the initial 1-D array, and set unlimited to cdms.Unlimited

cdms.createEqualAreaAxis(nlat)

See Table 2.2 on page 33.

cdms.createGaussianAxis(nlat)

See Table 2.2 on page 18.

Table 2.7 CoordinateAxis Internal Attributes

Type Name Definition
Climate Data Management System 43

CDMS Python Application Programming Interface

44
cdms.createUniformLatitudeAxis(startlat, nlat, deltalat)

See Table 2.2 on page 18.

cdms.createUniformLongitudeAxis(startlon, nlon, deltalon)

See Table 2.2 on page 18.

Table 2.9 CoordinateAxis Methods

Type Method Definition

Array array = axis[i:j]

Read a slice of data from the external file or dataset. Data
is returned in the physical ordering defined in the dataset.
See Table 2.11 on page 50 for a description of slice oper-
ators.

None axis[i:j] = array

Write a slice of data to the external file. Dataset axes are
read-only.

None assignValue(array)

Set the entire value of the axis.

array is a Numeric array, of the same dimensionality as the
axis.

Axis clone(copyData=1)

Return a copy of the axis, as a transient axis. If copyData is 1
(the default) the data itself is copied.

Table 2.8 Axis Constructors
Climate Data Management System

CoordinateAxis
None designateLatitude(persistent=0):

Designate the axis to be a latitude axis.

If persistent is true, the external file or dataset (if any) is mod-
ified. By default, the designation is temporary.

None designateLevel(persistent=0)

Designate the axis to be a vertical level axis.

If persistent is true, the external file or dataset (if any) is mod-
ified. By default, the designation is temporary.

None designateLongitude(persistent=0, modulo=360.0)

Designate the axis to be a longitude axis.

modulo is the modulus value. Any given axis value x is treated
as equivalent to x+modulus

If persistent is true, the external file or dataset (if any) is mod-
ified. By default, the designation is temporary.

None designateTime(persistent=0, calendar =
cdtime.MixedCalendar)

Designate the axis to be a time axis.

If persistent is true, the external file or dataset (if any) is mod-
ified. By default, the designation is temporary.

calendar is defined as in getCalendar().

Table 2.9 CoordinateAxis Methods

Type Method Definition
Climate Data Management System 45

CDMS Python Application Programming Interface

46
Array getBounds()

Get the associated boundary array.

The shape of the return array depends on the type of axis:

• Axis: (n,2)

• Axis2D: (i,j,4)

• AuxAxis1D: (ncell, nvert) where nvert is the maximum
number of vertices of a cell.

If the boundary array of a latitude or longitude Axis is not
explicitly defined, and autoBounds mode is on, a default array
is generated by calling genGenericBounds. Otherwise if auto-
Bounds mode is off, the return value is None. See setAuto-
Bounds.

Integer getCalendar()

Returns the calendar associated with the (time) axis. Possible
return values, as defined in the cdtime module, are:

• cdtime.GregorianCalendar: the standard Gregorian calen-
dar

• cdtime.MixedCalendar: mixed Julian/Gregorian calendar

• cdtime.JulianCalendar: years divisible by 4 are leap years

• cdtime.NoLeapCalendar: a year is 365 days

• cdtime.Calendar360: a year is 360 days

• None: no calendar can be identified

Note: If the axis is not a time axis, the global, file-related cal-
endar is returned.

Array getValue()

Get the entire axis vector.

Table 2.9 CoordinateAxis Methods

Type Method Definition
Climate Data Management System

CoordinateAxis
Integer isLatitude()

Returns true iff the axis is a latitude axis.

Integer isLevel()

Returns true iff the axis is a level axis.

Integer isLongitude()

Returns true iff the axis is a longitude axis.

Integer isTime()

Returns true iff the axis is a time axis.

Integer len(axis)

The length of the axis if one-dimensional. If multidimen-
sional, the length of the first dimension.

Integer size()

The number of elements in the axis.

String typecode()

The Numeric datatype identifier.

Table 2.9 CoordinateAxis Methods

Type Method Definition
Climate Data Management System 47

CDMS Python Application Programming Interface

48
Table 2.10 Axis Methods, additional to CoordinateAxis methods

Type Method Definition

List of com-
ponent
times

asComponentTime(calendar=None)

Array version of cdtime tocomp. Returns a list of com-
ponent times.

List of rela-
tive times

asRelativeTime()

Array version of cdtime torel. Returns a list of relative
times.

None designateCircular(modulo, persistent=0)

Designate the axis to be circular.

modulo is the modulus value. Any given axis value x is treated
as equivalent to x+modulus

If persistent is true, the external file or dataset (if any) is mod-
ified. By default, the designation is temporary.

Integer isCircular()

Returns true if the axis has circular topology.

An axis is defined as circular if:

• axis.topology==’circular’, or

• axis.topology is undefined, and the axis is a longitude
The default cycle for circular axes is 360.0

Integer isLinear()

Returns true iff the axis has a linear representation.

Tuple mapInterval(interval)

Same as mapIntervalExt, but returns only the tuple (i,j), and
wraparound is restricted to one cycle.
Climate Data Management System

CoordinateAxis
(i,j,k) mapIntervalExt(interval)

Map a coordinate interval to an index interval.

interval is a tuple having one of the forms:

 (x,y)
 (x,y,indicator)
 (x,y,indicator,cycle)
 None or ’:’

where x and y are coordinates indicating the interval
[x,y), and:

indicator is a two or three-character string, where the
first character is 'c' if the interval is closed on the left, 'o'
if open, and the second character has the same meaning
for the right-hand point. If present, the third character
specifies how the interval should be intersected with the
axis:

• ’n’ - select node values which are contained in the interval

• ’b’ - select axis elements for which the corresponding cell
boundary intersects the interval

• ’e’ - same as ’n’, but include an extra node on either side

• ’s’ - select axis elements for which the cell boundary is a
subset of the interval

The default indicator is ’ccn’, that is, the interval is
closed, and nodes in the interval are selected.

(continued)

Table 2.10 Axis Methods, additional to CoordinateAxis methods

Type Method Definition
Climate Data Management System 49

CDMS Python Application Programming Interface

50
(mapInterval, continued)

If cycle is specified, the axis is treated as circular with
the given cycle value. By default, if axis.isCircular() is
true, the axis is treated as circular with a default modulus
of 360.0.

An interval of None or ’:’ returns the full index interval
of the axis.

The method returns the corresponding index interval as a 3-
tuple (i,j,k), where k is the integer stride, and [i.j) is the half-
open index interval i<=k<j (i>=k>j if k<0), or None if the
intersection is empty.

For an axis which is circular (axis.topology == ‘circular’), [i,j)
is interpreted as follows, where N=len(axis):

• if 0<=i<N and 0<=j<=N, the interval does not wrap around
the axis endpoint.

• otherwise the interval wraps around the axis endpoint.

See also: mapInterval, Variable.subRegion()

Transien-
tAxis

subAxis(i,j,k=1)

Create an axis associated with the integer range [i:j:k]. The
stride k can be positive or negative. Wraparound is supported
for longitude dimensions or those with a modulus attribute.

Table 2.11 Axis Slice Operators

Slice Definition

[i] The ith element, starting with index 0

[i:j] The ith element through, but not including, element j

Table 2.10 Axis Methods, additional to CoordinateAxis methods

Type Method Definition
Climate Data Management System

CdmsFile
Example: A longitude axis has value [0.0, 2.0, ..., 358.0], of length 180.
Map the coordinate interval -5.0 <= x < 5.0 to index interval(s), with wrap-
around. The result index interval -2<=n<3 wraps around, since -2<0, and
has a stride of 1. This is equivalent to the two contiguous index intervals -
2<=n<0 and 0<=n<3

> axis.isCircular()
1
> axis.mapIntervalExt((-5.0,5.0,’co’))
(-2,3,1)
>

2.6 CdmsFile

A CdmsFile is a physical file, accessible via the cdunif interface.
netCDF files are accessible in read-write mode. All other formats (DRS,
HDF, GrADS/GRIB, POP, QL) are accessible read-only.

As of CDMS V3, the legacy cuDataset interface is also supported by Cdms-
Files. See “cu Module” on page 178.

[i:] The ith element through and including the end

[:j] The beginning element through, but not including, element
j

[:] The entire array

[i:j:k] Every kth element, starting at i, through but not including j

[-i] The ith element from the end. -1 is the last element.

Table 2.12 CdmsFile Internal Attributes

Type Name Definition

Dictionary attributes Global, external file attributes

Table 2.11 Axis Slice Operators

Slice Definition
Climate Data Management System 51

CDMS Python Application Programming Interface

52
Dictionary axes Axis objects contained in the file.

Dictionary grids Grids contained in the file.

String id File pathname.

Dictionary variables Variables contained in the file.

Table 2.13 CdmsFile Constructors

fileobj = cdms.open(path, mode)

Open the file specified by path returning a CdmsFile object.

path is the file pathname, a string.

mode is the open mode indicator, as listed in Table 2.24 on page 69.

fileobj = cdms.createDataset(path)

Create the file specified by path, a string.

Table 2.14 CdmsFile Methods

Type Definition

Transient-
Variable

fileobj(varname, selector)

Calling a CdmsFile object as a function reads the region of
data specified by the selector. The result is a transient variable,
unless raw=1 is specified. See “Selectors” on page 102.

For example, the following reads data for variable ’prc’, year
1980:

f = cdms.open(’test.nc’)
x = f(’prc’, time=(’1980-1’,’1981-1’))

Table 2.12 CdmsFile Internal Attributes

Type Name Definition
Climate Data Management System

CdmsFile
Variable,
Axis, or
Grid

fileobj[’id’]

Get the persistent variable, axis or grid object having the string
identifier. This does not read the data for a variable.

 For example:

f = cdms.open(’sample.nc’)
v = f[’prc’]

gets the persistent variable v, equivalent to v=f.vari-
ables[’prc’].

t = f[’time’]

gets the axis named ’time’, equivalent to t=f.axes[’time’].

None close()

Close the file.

Axis copyAxis(axis, newname=None)

Copy axis values and attributes to a new axis in the file. The
returned object is persistent: it can be used to write axis data to
or read axis data from the file. If an axis already exists in the
file, having the same name and coordinate values, it is
returned. It is an error if an axis of the same name exists, but
with different coordinate values.

axis is the axis object to be copied.

newname, if specified, is the string identifier of the new axis
object. If not specified, the identifier of the input axis is used.

Grid copyGrid(grid, newname=None)

Copy grid values and attributes to a new grid in the file. The
returned grid is persistent. If a grid already exists in the file,
having the same name and axes, it is returned. An error is
raised if a grid of the same name exists, having different axes.

grid is the grid object to be copied.

newname, if specified is the string identifier of the new grid
object. If unspecified, the identifier of the input grid is used.

Table 2.14 CdmsFile Methods

Type Definition
Climate Data Management System 53

CDMS Python Application Programming Interface

54
Axis createAxis(id, ar, unlimited=0)

Create a new Axis. This is a persistent object which can be
used to read or write axis data to the file.

id is an alphanumeric string identifier, containing no blanks.

ar is the one-dimensional axis array.

Set unlimited to cdms.Unlimited to indicate that the axis is
extensible.

RectGrid createRectGrid(id, lat, lon, order, type="generic",
mask=None)

Create a RectGrid in the file. This is not a persistent object: the
order, type, and mask are not written to the file. However, the
grid may be used for regridding operations.

lat is a latitude axis in the file.

lon is a longitude axis in the file.

order is a string with value “yx” (the first grid dimension is
latitude) or “xy” (the first grid dimension is longitude).

type is one of ’gaussian’,’uniform’,’equalarea’,or ’generic’

If specified, mask is a two-dimensional, logical Numeric array
(all values are zero or one) with the same shape as the grid.

Variable createVariable(String id, String datatype,List axes,
fill_value=None)

Create a new Variable. This is a persistent object which can be
used to read or write variable data to the file.

id is a String name which is unique with respect to all other
objects in the file.

datatype is an MA typecode, e.g., MA.Float, MA.Int.

axes is a list of Axis and/or Grid objects.

fill_value is the missing value (optional).

Table 2.14 CdmsFile Methods

Type Definition
Climate Data Management System

CdmsFile
Variable createVariableCopy(var, newname=None)

Create a new Variable, with the same name, axes, and
attributes as the input variable. An error is raised if a variable
of the same name exists in the file.

var is the Variable to be copied.

newname, if specified is the name of the new variable. If
unspecified, the returned variable has the same name as var.

Note: Unlike copyAxis, the actual data is not copied to the
new variable.

CurveGrid
or Generic-
Grid

readScripGrid(self, whichGrid=’destination’, check-
Grid=1)

Read a curvilinear or generic grid from a SCRIP netCDF file.
The file can be a SCRIP grid file or remapping file.

If a mapping file, whichGrid chooses the grid to read, either
"source" or "destination".

If checkGrid is 1 (default), the grid cells are checked for con-
vexity, and 'repaired' if necessary. Grid cells may appear to be
nonconvex if they cross a 0 / 2pi boundary. The repair consists
of shifting the cell vertices to the same side modulo 360
degrees.

None sync()

Writes any pending changes to the file.

Table 2.14 CdmsFile Methods

Type Definition
Climate Data Management System 55

CDMS Python Application Programming Interface

56
Variable write(var, attributes=None, axes=None, ext-
bounds=None, id=None, extend=None,
fill_value=None, index=None, typecode=None)

Write a variable or array to the file. The return value is the
associated file variable.

If the variable does not exist in the file, it is first defined and
all attributes written, then the data is written. By default, the
time dimension of the variable is defined as the ’unlimited’
dimension of the file. If the data is already defined, then data is
extended or overwritten depending on the value of keywords
extend and index, and the unlimited dimension values associ-
ated with var.

var is a Variable, masked array, or Numeric array.

attributes is the attribute dictionary for the variable. The
default is var.attributes.

axes is the list of file axes comprising the domain of the vari-
able. The default is to copy var.getAxisList().

extbounds is the unlimited dimension bounds. Defaults to
var.getAxis(0).getBounds()

id is the variable name in the file. Default is var.id.

extend=1 causes the first dimension to be ’unlimited’: itera-
tively writeable. The default is None, in which case the first
dimension is extensible if it is time.Set to 0 to turn off this
behaviour.

fill_value is the missing value flag.

index is the extended dimension index to write to. The default
index is determined by lookup relative to the existing extended
dimension.

Note: data can also be written by setting a slice of a file vari-
able, and attributes can be written by setting an attribute of a
file variable.

Table 2.14 CdmsFile Methods

Type Definition
Climate Data Management System

Database
2.7 Database

A Database is a collection of datasets and other CDMS objects. It
consists of a hierarchical collection of objects, with the database being at
the root, or top of the hierarchy. A database is used to:

• search for metadata

• access data

• provide authentication and access control for data and metadata

The figure below illustrates several important points:

• Each object in the database has a relative name of the form tag=id. The id of an
object is unique with respect to all objects contained in the parent.

• The name of the object consists of its relative name followed by the relative
name(s) of its antecedent objects, up to and including the database name. In the
figure below, one of the variables has name

“variable=ua, dataset=ncep_reanalysis_mo,database=CDMS”.

Table 2.15 CDMS Datatypes

CDMS
Datatype Definition

CdChar character

CdDouble double-precision floating-point

CdFloat floating-point

CdInt integer

CdLong long integer

CdShort short integer
Climate Data Management System 57

CDMS Python Application Programming Interface

58
• Subordinate objects are thought of as being contained in the parent. In this
example, the database ‘CDMS’ contains two datasets, each of which contain
several variables.

2.7.1 Overview

To access a database:

1. Open a connection. The connect method opens a database connection. connect
takes a database URI and returns a database object:
db = cdms.connect(“ldap://dbhost.llnl.gov/

database=CDMS,ou=PCMDI,o=LLNL,c=US”)

2. Search the database, locating one or more datasets, variables, and/or other
objects.

The database searchFilter method searches the database. A single database
connection may be used for an arbitrary number of searches.

For example, to find all observed datasets:

result = db.searchFilter("category=observed",tag=”dataset”)

Searches can be restricted to a subhierarchy of the database. This example
searches just the dataset ‘ncep_reanalysis_mo’:

result = db.searchFilter(relbase=”dataset=ncep_reanalysis”)

dataset=ncep_reanalysis_mo

variable=ua variable=va

dataset=ecmwf_reanalysis_mo

variable=ua variable=va

database=CDMS
Climate Data Management System

Database
3. Refine the search results if necessary. The result of a search can be narrowed
with the searchPredicate method.

4. Process the results. A search result consists of a sequence of entries. Each entry
has a name, the name of the CDMS object, and an attribute dictionary, consist-
ing of the attributes located by the search:
for entry in result:

print entry.name, entry.attributes

5. Access the data. The CDMS object associated with an entry is obtained from the
getObject method:
obj = entry.getObject()

If the id of a dataset is known, the dataset can be opened directly with the
open method:

dset = db.open(“ncep_reanalysis_mo”)

6. Close the database connection:
db.close()

Table 2.16 Database Internal Attributes

Type Name Summary

Dictionary attributes Database attribute dictionary

LDAP db (LDAP only) LDAP database object

String netloc Hostname, for server-based databases

String path path name

String uri Uniform Resource Identifier.
Climate Data Management System 59

CDMS Python Application Programming Interface

60
Table 2.17 Database Constructors

db = cdms.connect(uri=None, user="", password="")

Connect to the database.

uri is the Universal Resource Indentifier of the database. The form of the URI
depends on the implementation of the database. For a Lightweight Directory
Access Protocol (LDAP) database, the form is:

ldap://host[:port]/dbname

For example, if the database is located on host ‘dbhost.llnl.gov’, and is named
’database=CDMS,ou=PCMDI,o=LLNL,c=US’, the URI is:

ldap://dbhost.llnl.gov/database=CDMS,ou=PCMDI,o=LLNL,c=US

If unspecified, the URI defaults to the value of environment variable
CDMSROOT.

user is the user ID. If unspecified, an anonymous connection is made.

password is the user password. A password is not required for an anon-
ymous connection.

Table 2.18 Database Methods

Type Definition

None close()

Close a database connection.

List listDatasets()

Return a list of the dataset IDs in this database. A dataset ID
can be passed to the open command.
Climate Data Management System

Database
Dataset open(dsetid, mode=’r’)

Open a dataset.

dsetid is the string dataset identifier

mode is the open mode, ’r’ - read-only, ’r+’ - read-write, ’w’ -
create.

openDataset is a synonym for open.

Table 2.18 Database Methods

Type Definition
Climate Data Management System 61

CDMS Python Application Programming Interface

62
SearchResult searchFilter(filter=None, tag=None, relbase=None,
scope=Subtree, attnames=None, timeout=None)

Search a CDMS database.

filter is the string search filter. Simple filters have the form
"tag = value". Simple filters can be combined using logical
operators ’&’, ’|’, ’!’ in prefix notation. For example, the filter
’(&(objectclass=variable)(id=cli))’ finds all variables named
“cli”. A formal definition of search filters is provided in the
following section.

tag restricts the search to objects with that tag ("dataset" |
"variable" | "database" | "axis" | "grid").

relbase is the relative name of the base object of the search.
The search is restricted to the base object and all objects below
it in the hierarchy. For example, to search only dataset
‘ncep_reanalysis_mo’, specify:

relbase=”dataset=ncep_reanalysis_mo”.

To search only variable ’ua’ in ncep_reanalysis_mo, use:

relbase=”variable=ua,
dataset=ncep_reanalysis_mo”

If no base is specified, the entire database is searched. See the
scope argument also.

scope is the search scope (Subtree | Onelevel | Base). Subtree
searches the base object and its descendants. Onelevel
searches the base object and its immediate descendants. Base
searches the base object alone. The default is Subtree.

attnames: list of attribute names. Restricts the attributes
returned. If None, all attributes are returned. Attributes ’id’
and ’objectclass’ are always included in the list.

timeout: integer number of seconds before timeout. The
default is no timeout.

Table 2.18 Database Methods

Type Definition
Climate Data Management System

Database
2.7.2 Searching a database

The searchFilter method is used to search a database. The result is
called a search result, and consists of a sequence of result entries.

In its simplest form, searchFilter takes an argument consisting of a string
filter. The search returns a sequence of entries, corresponding to those
objects having an attribute which matches the filter. Simple filters have the
form (tag = value), where value can contain wildcards. For example:

’(id = ncep*)’
’(project = AMIP2)’

Simple filters can be combined with the logical operators ‘&’, ‘|’, ‘!’. For
example,

’(&(id = bmrc*)(project = AMIP2))’

matches all objects with id starting with ’bmrc’, and a ’project’ attribute
with value ’AMIP2’.

Formally, search filters are strings defined as follows:

filter ::= "(" filtercomp ")"
filtercomp ::= "&" filterlist | # and

"|" filterlist | # or
"!" filterlist | # not
simple

filterlist ::= filter | filter filterlist
simple ::= tag op value
op ::= "=" | # equality

"~=" | # approximate equality
"<=" | # lexicographically less than or equal to
">=" # lexicographically greater than or equal to

tag ::= string attribute name
value ::= string attribute value, may include ’*’ as a wild card

Attribute names are defined in the chapter on “Climate Data Markup Lan-
guage (CDML)” on page 147. In addition, some special attributes are
defined for convenience:

• category is either “experimental” or “observed”

• parentid is the ID of the parent dataset
Climate Data Management System 63

CDMS Python Application Programming Interface

64
• project is a project identifier, e.g., “AMIP2”

• objectclass is the list of tags associated with the object.

The set of objects searched is called the search scope. The top object in the
hierarchy is the base object. By default, all objects in the database are
searched, that is, the database is the base object. If the database is very
large, this may result in an unnecessarily slow or inefficient search. To rem-
edy this the search scope can be limited in several ways:

• The base object can be changed.

• The scope can be limited to the base object and one level below, or to just the
base object.

• The search can be restricted to objects of a given class (dataset, variable, etc.)

• The search can be restricted to return only a subset of the object attributes

• The search can be restricted to the result of a previous search.

A search result is accessed sequentially within a for loop:

result = db.searchFilter(’(&(category=obs*)(id=ncep*))’)
for entry in result:

print entry.name

Search results can be narrowed using searchPredicate. In the following
example, the result of one search is itself searched for all variables defined
on a 94x192 grid:

>>> result = db.searchFilter(’parentid=ncep*’,tag="variable")
>>> len(result)
65
>>> result2 = result.searchPredicate(lambda x:

x.getGrid().shape==(94,192))
>>> len(result2)
3
>>> for entry in result2: print entry.name
variable=rluscs,dataset=ncep_reanalysis_mo,database=CDMS,ou=PCMDI,

o=LLNL, c=US
variable=rlds,dataset=ncep_reanalysis_mo,database=CDMS,ou=PCMDI,

o=LLNL, c=US
variable=rlus,dataset=ncep_reanalysis_mo,database=CDMS,ou=PCMDI,

o=LLNL, c=US
>>>
Climate Data Management System

Database
A search result is a sequence of result entries. Each entry has a string name,
the name of the object in the database hierarchy, and an attribute dictionary.
An entry corresponds to an object found by the search, but differs from the
object, in that only the attributes requested are associated with the entry. In
general, there will be much more information defined for the associated
CDMS object, which is retrieved with the getObject method.

Table 2.19 SearchResult Methods

Type Definition

ResultEntry [i]

Return the i-th search result. Results can also be returned in a
for loop:

for entry in db.searchResult(tag="dataset"):
...

Integer len()

Number of entries in the result.

SearchResult searchPredicate(predicate, tag=None)

Refine a search result, with a predicate search.

predicate is a function which takes a single CDMS object and
returns true (1) if the object satisfies the predicate, 0 if not.

tag restricts the search to objects of the class denoted by the
tag.

Note: In the current implementation, searchPredicate is much
less efficient than searchFilter. For best performance, use
searchFilter to narrow the scope of the search, then use
searchPredicate for more general searches.
Climate Data Management System 65

CDMS Python Application Programming Interface

66
2.7.3 Accessing data

To access data via CDMS:

1. Locate the dataset ID. This may involve searching the metadata.

2. Open the dataset, using the open method.

3. Reference the portion of the variable to be read.

In the next example, a portion of variable ’ua’ is read from dataset
’ncep_reanalysis_mo’:

dset = db.open(’ncep_reanalysis_mo’)
ua = dset.variables[’ua’]
data = ua[0,0]

Table 2.20 ResultEntry Attributes

Type Name Summary

String name The name of this entry in the database.

Dictionary attributes The attributes returned from the search.

attributes[key] is a list of all string values asso-
ciated with the key.

Table 2.21 ResultEntry Methods

Type Definition

CdmsObj getObject()

Return the CDMS object associated with this entry.

Note: For many search applications it is unnecessary to access
the associated CDMS object. For best performance this func-
tion should be used only when necessary, for example, to
retrieve data associated with a variable.
Climate Data Management System

Database
2.7.4 Examples of database searches

In the following examples, db is the database opened with

db = cdms.connect()

This defaults to the database defined in environment variable CDMSROOT.

List all variables in dataset ’ncep_reanalysis_mo’:

for entry in db.searchFilter(filter="parentid=ncep_reanalysis_mo",
tag="variable"):

 print entry.name

Find all axes with bounds defined:

for entry in db.searchFilter(filter="bounds=*",tag="axis"):
 print entry.name

Locate all GDT datasets:

for entry in
db.searchFilter(filter="Conventions=GDT*",tag="dataset"):

 print entry.name

Find all variables with missing time values, in observed datasets:

def missingTime(obj):
 time = obj.getTime()
 return time.length != time.partition_length

result = db.searchFilter(filter="category=observed")
for entry in result.searchPredicate(missingTime):
 print entry.name

Find all CMIP2 datasets having a variable with id "hfss":

for entry in
db.searchFilter(filter="(&(project=CMIP2)(id=hfss))",tag="var
iable"):

 print entry.getObject().parent.id
Climate Data Management System 67

CDMS Python Application Programming Interface

68
Find all observed variables on 73x144 grids:

result = db.searchFilter(’category=obs*’)
for entry in result.searchPredicate(lambda x:

x.getGrid().shape==(73,144),tag="variable"):
 print entry.name

Find all observed variables with more than 1000 timepoints:

result = db.searchFilter(’category=obs*’)
for entry in result.searchPredicate(lambda x: len(x.getTime())>1000,

tag="variable"):
 print entry.name, len(entry.getObject().getTime())

Find the total number of each type of object in the database

print len(db.searchFilter(tag="database")),"database"
print len(db.searchFilter(tag="dataset")),"datasets"
print len(db.searchFilter(tag="variable")),"variables"
print len(db.searchFilter(tag="axis")),"axes"

2.8 Dataset

A Dataset is a virtual file. It consists of a metafile, in CDML/XML repre-
sentation, and one or more data files.

As of CDMS V3, the legacy cuDataset interface is supported by Datasets.
See “cu Module” on page 178.

Table 2.22 Dataset Internal Attributes

Type Name Summary

Dictionary attributes Dataset external attributes.

Dictionary axes Axes contained in the dataset.

String datapath Path of data files, relative to the parent data-
base. If no parent, the datapath is absolute.
Climate Data Management System

Dataset
Dictionary grids Grids contained in the dataset.

String mode Open mode.

Database parent Database which contains this dataset. If the
dataset is not part of a database, the value is
None.

String uri Uniform Resource Identifier of this dataset.

Dictionary variables Variables contained in the dataset.

Dictionary xlinks External links contained in the dataset.

Table 2.23 Dataset Constructors

datasetobj = cdms.open(String uri, String mode='r')

Open the dataset specified by the Universal Resource Indicator, a CDML file.
Returns a Dataset object. mode is one of the indicators listed in Table 2.24 on
page 69.

openDataset is a synonym for open.

Table 2.24 Open Modes

Mode Definition

 'r' read-only

'r+' read-write

'a' read-write. Open the file if it exists, otherwise create a
new file

'w' Create a new file, read-write

Table 2.22 Dataset Internal Attributes

Type Name Summary
Climate Data Management System 69

CDMS Python Application Programming Interface

70
Table 2.25 Dataset Methods

Type Definition

Transient-
Variable

datasetobj(varname, selector)

Calling a Dataset object as a function reads the region of data
defined by the selector. The result is a transient variable,
unless raw=1 is specified. See “Selectors” on page 102.

For example, the following reads data for variable ’prc’, year
1980:

f = cdms.open(’test.xml’)
x = f(’prc’, time=(’1980-1’,’1981-1’))

Variable,
Axis, or
Grid

datasetobj[’id’]

The square bracket operator applied to a dataset gets the per-
sistent variable, axis or grid object having the string identifier.
This does not read the data for a variable. Returns None if not
found.

 For example:

f = cdms.open(’sample.xml’)
v = f[’prc’]

gets the persistent variable v, equivalent to v=f.vari-
ables[’prc’].

t = f[’time’]

gets the axis named ‘time’, equivalent to t=f.axes[’time’].

None close()

Close the dataset.
Climate Data Management System

Dataset
RectGrid createRectGrid(id, lat, lon, order, type="generic",
mask=None)

Create a RectGrid in the dataset. This is not a persistent object:
the order, type, and mask are not written to the dataset. How-
ever, the grid may be used for regridding operations.

lat is a latitude axis in the dataset.

lon is a longitude axis in the dataset.

order is a string with value “yx” (the first grid dimension is
latitude) or “xy” (the first grid dimension is longitude).

type is one of ’gaussian’,’uniform’,’equalarea’,or ’generic’

If specified, mask is a two-dimensional, logical Numeric array
(all values are zero or one) with the same shape as the grid.

Axis getAxis(id)

Get an axis object from the file or dataset.

id is the string axis identifier.

Grid getGrid(id)

Get a grid object from a file or dataset.

id is the string grid identifier.

List getPaths()

Get a sorted list of pathnames of datafiles which comprise the
dataset. This does not include the XML metafile path, which is
stored in the .uri attribute.

Variable getVariable(id)

Get a variable object from a file or dataset.

id is the string variable identifier.

Table 2.25 Dataset Methods

Type Definition
Climate Data Management System 71

CDMS Python Application Programming Interface

72
2.9 MV module

The fundamental CDMS data object is the variable. A variable is comprised
of:

• a masked data array, as defined in the NumPy MA module.

• a domain: an ordered list of axes and/or grids.

• an attribute dictionary.

The MV module is a work-alike replacement for the MA module, that car-
ries along the domain and attribute information where appropriate. MV pro-
vides the same set of functions as MA. However, MV functions generate

CurveGrid
or Generic-
Grid

readScripGrid(self, whichGrid=’destination’, check-
Grid=1)

Read a curvilinear or generic grid from a SCRIP dataset. The
dataset can be a SCRIP grid file or remapping file.

If a mapping file, whichGrid chooses the grid to read, either
"source" or "destination".

If checkGrid is 1 (default), the grid cells are checked for con-
vexity, and 'repaired' if necessary. Grid cells may appear to be
nonconvex if they cross a 0 / 2pi boundary. The repair consists
of shifting the cell vertices to the same side modulo 360
degrees.

None sync()

Write any pending changes to the dataset.

Table 2.25 Dataset Methods

Type Definition
Climate Data Management System

MV module
transient variables as results. Often this simplifies scripts that perform com-
putation. MA is part of the Python Numeric package, documented at http://
numpy.sourceforge.net.

MV can be imported with the command:

import MV

The command

from MV import *

allows use of MV commands without any prefix.

Table 2.26 on page 74 lists the constructors in MV. All functions return a
transient variable. In most cases the keywords axes, attributes, and id are
available. axes is a list of axis objects which specifies the domain of the
variable. attributes is a dictionary. id is a special attribute string that serves
as the identifier of the variable, and should not contain blanks or non-print-
ing characters. It is used when the variable is plotted or written to a file.
Since the id is just an attribute, it can also be set like any attribute:

var.id = ’temperature’

For completeness MV provides access to all the MA functions. The func-
tions not listed in the following tables are identical to the corresponding MA
function: allclose, allequal, common_fill_value, compress, create_mask,
dot, e, fill_value, filled, get_print_limit, getmask, getmaskarray, iden-
tity, indices, innerproduct, isMA, isMaskedArray, is_mask, isarray,
make_mask, make_mask_none, mask_or, masked, pi, put, putmask,
rank, ravel, set_fill_value, set_print_limit, shape, size. See the documen-
tation at http://numpy.sourceforge.net for a description of these functions.
Climate Data Management System 73

CDMS Python Application Programming Interface

74
Table 2.26 Variable Constructors in module MV

arrayrange(start, stop=None, step=1, typecode=None, axis=None,
attributes=None, id=None)

Just like MA.arange() except it returns a variable whose type can be specfied
by the keyword argument typecode. The axis, attribute dictionary, and string
identifier of the result variable may be specified.

Synonym: arange

masked_array(a, mask=None, fill_value=None, axes=None,
attributes=None, id=None)

Same as MA.masked_array but creates a variable instead. If no axes are speci-
fied, the result has default axes, otherwise axes is a list of axis objects match-
ing a.shape.

masked_object(data, value, copy=1, savespace=0, axes=None,
attributes=None, id=None)

Create variable masked where exactly data equal to value. Create the variable
with the given list of axis objects, attribute dictionary, and string id.

masked_values(data, value, rtol=1e-05, atol=1e-08, copy=1, savespace=0,
axes=None, attributes=None, id=None)

Constructs a variable with the given list of axes and attribute dictionary, whose
mask is set at those places where

abs (data - value) < atol + rtol * abs (data).

This is a careful way of saying that those elements of the data that have value
= value (to within a tolerance) are to be treated as invalid. If data is not of a
floating point type, calls masked_object instead.

ones(shape, typecode=’l’, savespace=0, axes=None, attributes=None,
id=None)

Return an array of all ones of the given length or shape.
Climate Data Management System

MV module
The following table describes the MV non-constructor functions. With the
exception of argsort, all functions return a transient variable.

reshape(a, newshape, axes=None, attributes=None, id=None)

Copy of a with a new shape.

resize(a, new_shape, axes=None, attributes=None, id=None)

Return a new array with the specified shape. The original array’s total size can
be any size.

zeros(shape, typecode=’l’, savespace=0, axes=None, attributes=None,
id=None)

An array of all zeros of the given length or shape.

Table 2.27 MV functions

Definition

argsort(x, axis=-1, fill_value=None)

Return a Numeric array of indices for sorting along a given axis.

asarray(data, typecode=None)

Same as cdms.createVariabledata, typecode, copy=0). This is a short way of
ensuring that something is an instance of a variable of a given type before pro-
ceeding, as in

data = asarray(data)

Also see the variable astype() function.

Table 2.26 Variable Constructors in module MV
Climate Data Management System 75

CDMS Python Application Programming Interface

76
average(a, axis=0, weights=None)

computes the average value of the non-masked elements of x along the se-
lected axis. If weights is given, it must match the size and shape of x, and the
value returned is:

sum(a*weights)/sum(weights)

In computing these sums, elements that correspond to those that are masked in
x or weights are ignored.

choose(condition, t)

has a result shaped like array condition. t must be a tuple of two arrays t1 and
t2. Each element of the result is the corresponding element of t1 where condi-
tion is true, and the corresponding element of t2 where condition is false. The
result is masked where condition is masked or where the selected element is
masked.

concatenate(arrays, axis=0, axisid=None, axisattributes=None)

Concatenate the arrays along the given axis. Give the extended axis the id and
attributes provided - by default, those of the first array.

count(a, axis=None)

Count of the non-masked elements in a, or along a certain axis.

isMaskedVariable(x)

Return true if x is an instance of a variable.

masked_equal(x, value)

x masked where x equals the scalar value For floating point value consider
masked_values(x, value) instead.

masked_greater(x, value)

x masked where x > value

masked_greater_equal(x, value)

x masked where x >= value

Table 2.27 MV functions

Definition
Climate Data Management System

MV module
masked_less(x, value)

x masked where x < value

masked_less_equal(x, value)

x masked where x <= value

masked_not_equal(x, value)

x masked where x != value

masked_outside(x, v1, v2)

x with mask of all values of x that are outside [v1,v2]

masked_where(condition, x, copy=1)

Return x as a variable masked where condition is true. Also masked where x
or condition masked. condition is a masked array having the same shape as x.

maximum(a, b=None)

Compute the maximum valid values of x if y is None; with two arguments,
return the element-wise larger of valid values, and mask the result where either
x or y is masked.

minimum(a, b=None)

Compute the minimum valid values of x if y is None; with two arguments,
return the element-wise smaller of valid values, and mask the result where
either x or y is masked.

outerproduct(a, b)

Return a variable such that result[i, j] = a[i] * b[j]. The result will be masked
where a[i] or b[j] is masked.

power(a, b)

a**b

product(a, axis=0, fill_value=1)

Product of elements along axis using fill_value for missing elements.

Table 2.27 MV functions

Definition
Climate Data Management System 77

CDMS Python Application Programming Interface

78
2.10 HorizontalGrid

A HorizontalGrid represents a latitude-longitude coordinate system. In
addition, it optionally describes how lat-lon space is partitioned into cells.
Specifically, a HorizontalGrid:

repeat(ar, repeats, axis=0)

Return ar repeated repeats times along axis. repeats is a sequence of length
ar.shape[axis] telling how many times to repeat each element.

set_default_fill_value(value_type, value)

Set the default fill value for value_type to value. value_type is a string:
’real’,’complex’,’character’,’integer’,or ’object’. value should be a
scalar or single-element array.

sort(ar, axis=-1)

Sort array ar elementwise along the specified axis. The corresponding axis in
the result has dummy values.

sum(a, axis=0, fill_value=0)

Sum of elements along a certain axis using fill_value for missing.

take(a, indices, axis=0)

Return a selection of items from a. See the documentation in the Numeric
manual.

transpose(ar, axes=None)

Perform a reordering of the axes of array ar depending on the tuple of indices
axes;thedefault is to reverse the order of the axes.

where(condition, x, y)

x where condition is true, y otherwise.

Table 2.27 MV functions

Definition
Climate Data Management System

HorizontalGrid
• consists of a latitude and longitude coordinate axis.

• may have associated boundary arrays describing the grid cell boundaries,

• may optionally have an associated logical mask.

CDMS supports several types of HorizontalGrids:

Table 2.31 on page 81 describes the methods that apply to all types of Hori-
zontalGrids. Table 2.32 on page 85 describes the additional methods that
are unique to RectGrids.

Table 2.28

Grid Type Description

RectGrid Associated latitude an longitude are 1-D axes, with strictly
monotonic values.

CurveGrid Latitude and longitude are 2-D coordinate axes (Axis2D).

GenericGrid Latitude and longitude are 1-D auxiliary coordinate axis
(AuxAxis1D)

Table 2.29 HorizontalGrid Internal Attributes

Type Name Definition

Dictionary attributes External attribute dictionary.

String id The grid identifier.

Dataset or
CdmsFile

parent The dataset or file which contains the grid.

Tuple shape The shape of the grid, a 2-tuple.
Climate Data Management System 79

CDMS Python Application Programming Interface

80
Table 2.30 RectGrid Constructors

cdms.createRectGrid(lat, lon, order, type="generic", mask=None)

Create a grid not associated with a file or dataset.

See Table 2.2 on page 33.

CdmsFile.createRectGrid(id, lat, lon, order, type="generic",
mask=None)

Create a grid associated with a file. See Table 2.14 on page 52.

Dataset.createRectGrid(id, lat, lon, order, type="generic",
mask=None)

Create a grid associated with a dataset. See Table 2.25 on page 70.

cdms.createGaussianGrid(nlats, xorigin=0.0, order=”yx”)

See Table 2.2 on page 33.

cdms.createGenericGrid(latArray, lonArray, latBounds=None,
lonBounds=None, order="yx", mask=None)

See Table 2.2 on page 18.

cdms.createGlobalMeanGrid(grid)

See Table 2.2 on page 18.

cdms.createRectGrid(lat, lon, order, type="generic", mask=None)

See Table 2.2 on page 18.

cdms.createUniformGrid(startLat, nlat, deltaLat, startLon, nlon,
deltaLon, order="yx", mask=None)

See Table 2.2 on page 18.

cdms.createZonalGrid(grid)

See Table 2.2 on page 18.
Climate Data Management System

HorizontalGrid

Table 2.31 HorizontalGrid Methods

Type Definition

Horizontal-
Grid

clone()

Return a transient copy of the grid.

Axis getAxis(Integer n)

Get the n-th axis.

n is either 0 or 1.
Climate Data Management System 81

CDMS Python Application Programming Interface

82
Tuple getBounds()

Get the grid boundary arrays.

Returns a tuple (latitudeArray, longitudeArray), where lati-
tudeArray is a Numeric array of latitude bounds, and similarly
for longitudeArray.The shape of latitudeArray and longitude-
Array depend on the type of grid:

• for rectangular grids with shape (nlat, nlon), the boundary
arrays have shape (nlat,2) and (nlon,2).

• for curvilinear grids with shape (nx, ny), the boundary
arrays each have shape (nx, ny, 4).

• for generic grids with shape (ncell,), the boundary arrays
each have shape (ncell, nvert) where nvert is the maximum
number of vertices per cell.

For rectilinear grids: If no boundary arrays are explicitly
defined (in the file or dataset), the result depends on the auto-
Bounds mode (see cdms.setAutoBounds) and the grid classi-
fication mode (see cdms.setClassifyGrids). By default,
autoBounds mode is enabled, in which case the boundary
arrays are generated based on the type of grid. If disabled, the
return value is (None,None).

For rectilinear grids: The grid classification mode specifies
how the grid type is to be determined. By default, the grid type
(Gaussian, uniform, etc.) is determined by calling grid.classi-
fyInFamily. If the mode is ’off’ grid.getType is used instead

Axis getLatitude()

Get the latitude axis of this grid.

Axis getLongitude()

Get the latitude axis of this grid.

Table 2.31 HorizontalGrid Methods

Type Definition
Climate Data Management System

HorizontalGrid
Array getMask()

Get the mask array of this grid, if any.

Returns a 2-D Numeric array, having the same shape as the
grid. If the mask is not explicitly defined, the return value is
None.

Array getMesh(self, transpose=None)

Generate a mesh array for the meshfill graphics method.
If transpose is defined to a tuple, say (1,0), first transpose
latbounds and lonbounds according to the tuple, in this case
(1,0,2).

None setBounds(latBounds, lonBounds, persistent=0)

Set the grid boundaries.

latBounds is a NumPy array of shape (n,2), such that the
boundaries of the kth axis value are [latBounds[k,0],lat-
Bounds[k,1]].

lonBounds is defined similarly for the longitude array.

Note: By default, the boundaries are not written to the file or
dataset containing the grid (if any). This allows bounds to be
set on read-only files, for regridding. If the optional argument
persistent is set to 1, the boundary array is written to the file.

None setMask(mask, persistent=0)

Set the grid mask. If persistent==1, the mask values are writ-
ten to the associated file, if any. Otherwise, the mask is associ-
ated with the grid, but no I/O is generated.

mask is a two-dimensional, Boolean-valued Numeric array,
having the same shape as the grid.

Table 2.31 HorizontalGrid Methods

Type Definition
Climate Data Management System 83

CDMS Python Application Programming Interface

84
Horizontal-
Grid

subGridRegion(latInterval, lonInterval)

Create a new grid corresponding to the coordinate region
defined by latInterval, lonInterval.

latInterval and lonInterval are the coordinate intervals
for latitude and longitude, respectively.

Each interval is a tuple having one of the forms:

 (x,y)
 (x,y,indicator)
 (x,y,indicator,cycle)
 None

where x and y are coordinates indicating the interval
[x,y), and:

indicator is a two-character string, where the first char-
acter is 'c' if the interval is closed on the left, 'o' if open,
and the second character has the same meaning for the
right-hand point. (Default: ’co’)

If cycle is specified, the axis is treated as circular with
the given cycle value. By default, if grid.isCircular() is
true, the axis is treated as circular with a default value of
360.0.

An interval of None returns the full index interval of the
axis.

If a mask is defined, the subgrid also has a mask correspond-
ing to the index ranges.

Note: The result grid is not associated with any file or dataset.

Table 2.31 HorizontalGrid Methods

Type Definition
Climate Data Management System

HorizontalGrid
Transient-
CurveGrid

toCurveGrid(gridid=None)

Convert to a curvilinear grid. If the grid is already curvilinear,
a copy of the grid object is returned.

gridid is the string identifier of the resulting curvilinear grid
object. If unspecified, the grid ID is copied.

Note: This method does not apply to generic grids.

Transient-
GenericGrid

toGenericGrid(gridid=None)

Convert to a generic grid. If the grid is already generic, a copy
of the grid is returned.

gridid is the string identifier of the resulting curvilinear grid
object. If unspecified, the grid ID is copied.

Table 2.32 RectGrid Methods, additional to HorizontalGrid Methods

String getOrder()

Get the grid ordering, either “yx” if latitude is the first axis, or
“xy” if longitude is the first axis.

String getType()

Get the grid type, either “gaussian”, “uniform”, “equalarea”,
or “generic”.

Table 2.31 HorizontalGrid Methods

Type Definition
Climate Data Management System 85

CDMS Python Application Programming Interface

86
(Array,Arra
y)

getWeights()

Get the normalized area weight arrays, as a tuple (latWeights,
lonWeights). It is assumed that the latitude and longitude axes
are defined in degrees.

The latitude weights are defined as:

latWeights[i] = 0.5 * abs(sin(latBounds[i+1]) -
sin(latBounds[i]))

The longitude weights are defined as:

lonWeights[i] = abs(lonBounds[i+1] -
lonBounds[i])/360.0

For a global grid, the weight arrays are normalized such that
the sum of the weights is 1.0

Example: Generate the 2-D weights array, such that
weights[i.j] is the fractional area of grid zone [i,j].

from cdms import MV
latwts, lonwts = grid.getWeights()
weights = MV.outerproduct(latwts, lonwts)

Also see the function area_weights in module
pcmdi.weighting.

None setType(gridtype)

Set the grid type.

gridtype is one of “gaussian”, “uniform”, “equalarea”, or
“generic”.

Table 2.32 RectGrid Methods, additional to HorizontalGrid Methods
Climate Data Management System

Variable
2.11 Variable

A Variable is a multidimensional data object, consisting of:

• a multidimensional data array, possibly masked,

• a collection of attributes

• a domain, an ordered tuple of CoordinateAxis objects.

A Variable which is contained in a Dataset or CdmsFile is called a persistent
variable. Setting a slice of a persistent Variable writes data to the Dataset or
file, and referencing a Variable slice reads data from the Dataset. Variables
may also be transient, not associated with a Dataset or CdmsFile.

RectGrid subGrid((latStart,latStop),(lonStart,lonStop))

Create a new grid, with latitude index range [latStart : latStop]
and longitude index range [lonStart : lonStop]. Either index
range can also be specified as None, indicating that the entire
range of the latitude or longitude is used. For example,

newgrid = oldgrid.subGrid(None, (lonStart, lonStop))

creates newgrid corresponding to all latitudes, and index range
[lonStart:lonStop] of oldgrid.

If a mask is defined, the subgrid also has a mask correspond-
ing to the index ranges.

Note: The result grid is not associated with any file or dataset.

RectGrid transpose()

Create a new grid, with axis order reversed. The grid mask is
also transposed.

Note: The result grid is not associated with any file or dataset.

Table 2.32 RectGrid Methods, additional to HorizontalGrid Methods
Climate Data Management System 87

CDMS Python Application Programming Interface

88
Variables support arithmetic operations. The basic Python operators are +,-
,*,/,**, abs, and sqrt, together with the operations defined in the MV mod-
ule. The result of an arithmetic operation is a transient variable, that is, the
axis information is transferred to the result.

The methods subRegion and subSlice return transient variables. In ddition,
a transient variable may be created with the cdms.createVariable method.
The vcs and regrid module methods take advantage of the attribute, domain,
and mask information in a transient variable.

Table 2.33 Variable Internal Attributes

Type Name Definition

Dictionary attributes External attribute dictionary.

String id Variable identifier.

String name_in_file The name of the variable in the file or files
which represent the dataset. If different from
id, the variable is ‘aliased’.

Dataset or
CdmsFile

parent The dataset or file which contains the variable.

Tuple shape The length of each axis of the variable.
Climate Data Management System

Variable
Table 2.34 Variable Constructors

Dataset.createVariable(String id, String datatype, List axes)

Create a Variable in a Dataset. This function is not yet implemented.
Climate Data Management System 89

CDMS Python Application Programming Interface

90
CdmsFile.createVariable(String id, String datatype, List axesOr-
Grids)

Create a Variable in a CdmsFile.

id is the name of the variable.

datatype is the MA or Numeric typecode, for example, MA.Float.

axesOrGrids is a list of Axis and/or Grid objects, on which the variable
is defined. Specifying a rectilinear grid is equivalent to listing the grid
latitude and longitude axes, in the order defined for the grid. Note: this
argument can either be a list or a tuple. If the tuple form is used, and
there is only one element, it must have a following comma, e.g.:
(axisobj,).

Table 2.34 Variable Constructors
Climate Data Management System

Variable
cdms.createVariable(array, typecode=None, copy=0, savespace=0,
mask=None, fill_value=None, grid=None, axes=None,
attributes=None, id=None)

Create a transient variable, not associated with a file or dataset.

array is the data values: a Variable, masked array, or Numeric array.

typecode is the MA typecode of the array. Defaults to the typecode of array.

copy is an integer flag: if 1, the variable is created with a copy of the array, if 0
the variable data is shared with array.

savespace is an integer flag: if set to 1, internal Numeric operations will
attempt to avoid silent upcasting.

mask is an array of integers with value 0 or 1, having the same shape as array.
array elements with a corresponding mask value of 1 are considered ‘invalid’,
and are not used for subsequent Numeric operations. The default mask is
obtained from array if present, otherwise is None.

fill_value is the missing value flag. The default is obtained from array if possi-
ble, otherwise is set to 1.0e20 for floating point variables, 0 for integer-valued
variables.

grid is a rectilinear grid object.

axes is a tuple of axis objects. By default the axes are obtained from array if
present. Otherwise for a dimension of length n, the default axis has values [0.,
1., ..., double(n)].

attributes is a dictionary of attribute values. The dictionary keys must be
strings. By default the dictionary is obtained from array if present, otherwise
is empty.

id is the string identifier of the variable. By default the id is obtained from
array if possible, otherwise is set to ’variable_n’ for some integer n.

Table 2.34 Variable Constructors
Climate Data Management System 91

CDMS Python Application Programming Interface

92
Table 2.35 Variable Methods

Type Definition

Variable tvar = var[i:j, m:n]

Read a slice of data from the file or dataset, resulting in a tran-
sient variable. Singleton dimensions are ‘squeezed’ out. Data
is returned in the physical ordering defined in the dataset. The
forms of the slice operator are listed in Table 2.36 on
page 101.

var[i:j, m:n] = array

Write a slice of data to the external dataset. The forms of the
slice operator are listed in Table 2.21 on page 32. (Variables in
CdmsFiles only)

Variable tvar = var(selector)

Calling a variable as a function reads the region of data
defined by the selector. The result is a transient variable,
unless raw=1 keyword is specified. ‘See “Selectors” on
page 102.

None assignValue(Array ar)

Write the entire data array. Equivalent to var[:] = ar. (Variables
in CdmsFiles only).

Variable astype(typecode)

Cast the variable to a new datatype. Typecodes are as for MV,
MA, and Numeric modules.

Variable clone(copyData=1)

Return a copy of a transient variable.

If copyData is 1 (the default) the variable data is copied as
well. If copyData is 0, the result transient variable shares the
original transient variable’s data array.
Climate Data Management System

Variable
Transient
Variable

crossSectionRegrid(newLevel, newLatitude,
method="log", missing=None, order=None)

Return a lat/level vertical cross-section regridded to a new set
of latitudes newLatitude and levels newLevel. The variable
should be a function of latitude, level, and (optionally) time.

newLevel is an axis of the result pressure levels.

newLatitude is an axis of the result latitudes.

method is optional, either "log" to interpolate in the log of
pressure (default), or "linear" for linear interpolation.

missing is a missing data value. The default is var.getMissing()

order is an order string such as "tzy" or "zy". The default is
var.getOrder()

See also: regrid, pressureRegrid.

Axis getAxis(n)

Get the n-th axis.

n is an integer.

List getAxisIds()

Get a list of axis identifiers.

Integer getAxisIndex(axis_spec)

Return the index of the axis specificed by axis_spec. Return -1
if no match.

axis_spec is a specification as defined for getAxisList

Table 2.35 Variable Methods

Type Definition
Climate Data Management System 93

CDMS Python Application Programming Interface

94
List getAxisList(axes=None, omit=None, order=None)

Get an ordered list of axis objects in the domain of the vari-
able..

If axes is not None, include only certain axes. Otherwise axes
is a list of specifications as described below. Axes are returned
in the order specified unless the order keyword is given.

If omit is not None, omit those specified by an integer dimen-
sion number. Otherwise omit is a list of specifications as
described below.

order is an optional string determining the output order.

Specifications for the axes or omit keywords are a list, each
element having one of the following forms:

• an integer dimension index, starting at 0.

• a string representing an axis id or one of the strings
’time’, ’latitude’, ’lat’, ’longitude’, ’lon’,

’lev’ or ’level’.

• a function that takes an axis as an argument and returns a
value. If the value returned is true, the axis matches.

• an axis object; will match if it is the same object as axis.
 order can be a string containing the characters
t,x,y,z, or -. If a dash (’-’) is given, any elements of the
result not chosen otherwise are filled in from left to right with
remaining candidates.

List getAxisListIndex(axes=None, omit=None,
order=None)

Return a list of indices of axis objects. Arguments are as for
getAxisList.

Table 2.35 Variable Methods

Type Definition
Climate Data Management System

Variable
List getDomain()

Get the domain. Each element of the list is itself a tuple of the
form

(axis,start,length,true_length)

where axis is an axis object, start is the start index of the
domain relative to the axis object, length is the length of the
axis, and true_length is the actual number of (defined) points in
the domain.

See also: getAxisList.

Horizontal-
Grid

getGrid()

Return the associated grid, or None if the variable is not grid-
ded.

Axis getLatitude()

Get the latitude axis, or None if not found.

Axis getLevel()

Get the vertical level axis, or None if not found.

Axis getLongitude()

Get the longitude axis, or None if not found.

Various getMissing()

Get the missing data value, or None if not found.

Table 2.35 Variable Methods

Type Definition
Climate Data Management System 95

CDMS Python Application Programming Interface

96
String getOrder()

Get the order string of a spatio-temporal variable. The order
string specifies the physical ordering of the data. It is a string
of characters with length equal to the rank of the variable, indi-
cating the order of the variable’s time, level, latitude, and/or
longitude axes. Each character is one of:

’t’: time
’z’: vertical level
’y: latitude
’x’: longitude
’-’: the axis is not spatio-temporal.

Example: A variable with ordering “tzyx” is 4-dimensional,
where the ordering of axes is (time, level, latitude, longitude).

Note: The order string is of the form required for the order
argument of a regridder function.

List getPaths(*intervals)

Get the file paths associated with the index region specified by
intervals.

intervals is a list of scalars, 2-tuples representing [i,j), slices,
and/or Ellipses. If no argument(s) are present, all file paths
associated with the variable are returned.

Returns a list of tuples of the form (path,slicetuple), where
path is the path of a file, and slicetuple is itself a tuple of
slices, of the same length as the rank of the variable, represent-
ing the portion of the variable in the file corresponding to
intervals.

Note: This function is not defined for transient variables.

Axis getTime()

Get the time axis, or None if not found.

Table 2.35 Variable Methods

Type Definition
Climate Data Management System

Variable
Integer len(var)

The length of the first dimension of the variable. If the variable
is zero-dimensional (scalar), a length of 0 is returned.

Note: size() returns the total number of elements.

Transient
Variable

pressureRegrid (newLevel, method="log", miss-
ing=None, order=None)

Return the variable regridded to a new set of pressure levels
newLevel. The variable must be a function of latitude, longi-
tude, pressure level, and (optionally) time.

newLevel is an axis of the result pressure levels.

method is optional, either "log" to interpolate in the log of
pressure (default), or "linear" for linear interpolation.

missing is a missing data value. The default is var.getMissing()

order is an order string such as "tzyx" or "zyx". The default is
var.getOrder()

See also: regrid, crossSectionRegrid.

Integer rank()

The number of dimensions of the variable.

Table 2.35 Variable Methods

Type Definition
Climate Data Management System 97

CDMS Python Application Programming Interface

98
Transient
Variable

regrid (togrid, missing=None, order=None,
mask=None)

Return the variable regridded to the horizontal grid togrid.

missing is a Float specifying the missing data value. The
default is 1.0e20.

order is a string indicating the order of dimensions of the
array. It has the form returned from variable.getOrder(). For
example, the string “tzyx” indicates that the dimension order
of array is (time, level, latitude, longitude). If unspecified, the
function assumes that the last two dimensions of array match
the input grid.

mask is a Numeric array, of datatype Integer or Float, consist-
ing of ones and zeros. A value of 0 or 0.0 indicates that the
corresponding data value is to be ignored for purposes of
regridding. If mask is two-dimensional of the same shape as
the input grid, it overrides the mask of the input grid. If the
mask has more than two dimensions, it must have the same
shape as array. In this case, the missing data value is also
ignored. Such an n-dimensional mask is useful if the pattern of
missing data varies with level (e.g., ocean data) or time.
Note: If neither missing or mask is set, the default mask is
obtained from the mask of the array if any.

See also: crossSectionRegrid, pressureRegrid.

None setAxis(n, axis)

Set the n-th axis (0-origin index) of to a copy of axis.

None setAxisList(axislist)

Set all axes of the variable. axislist is a list of axis objects.

None setMissing(value)

Set the missing value.

Table 2.35 Variable Methods

Type Definition
Climate Data Management System

Variable
Integer size()

Number of elements of the variable.

Variable subRegion(*region, time=None, level=None, lati-
tude=None, longitude=None, squeeze=0, raw=0)

Read a coordinate region of data, returning a transient vari-
able. A region is a hyperrectangle in coordinate space.

region is an argument list, each item of which specifies an
interval of a coordinate axis. The intervals are listed in the
order of the variable axes. If trailing dimensions are omitted,
all values of those dimensions are retrieved. If an axis is circu-
lar (axis.isCircular() is true) or cycle is specified (see below),
then data will be read with wraparound in that dimension.
Only one axis may be read with wraparound. A coordinate
interval has one of the forms listed in Table 2.37 on page 101.
Also see axis.mapIntervalExt.

The optional keyword arguments time, level, latitude, and lon-
gitude may also be used to specify the dimension for which the
interval applies. This is particularly useful if the order of
dimensions is not known in advance. An exception is raised if
a keyword argument conflicts with a positional region argu-
ment.

The optional keyword argument squeeze determines whether
or not the shape of the returned array contains dimensions
whose length is 1; by default this argument is 0, and such
dimensions are not ’squeezed out’.

The optional keyword argument raw specifies whether the
return object is a variable or a masked array. By default, a tran-
sient variable is returned, having the axes and attributes corre-
sponding to the region read. If raw=1, an MA masked array is
returned, equivalent to the transient variable without the axis
and attribute information.

Table 2.35 Variable Methods

Type Definition
Climate Data Management System 99

CDMS Python Application Programming Interface

100
Example: Get a region of data.

Variable ta is a function of (time, latitude, longitude). Read data correspond-
ing to all times, latitudes -45.0 up to but not including +45.0, longitudes 0.0
through and including longitude 180.0:

Variable subSlice(*specs, time=None, level=None, lati-
tude=None, longitude=None, squeeze=0, raw=0)

Read a slice of data, returning a transient variable. This is a
functional form of the slice operator [] with the squeeze option
turned off.

specs is an argument list, each element of which specifies a
slice of the corresponding dimension. There can be zero or
more positional arguments, each of the form:

(a) a single integer n, meaning slice(n, n+1)

(b) an instance of the slice class

(c) a tuple, which will be used as arguments to create a slice

(d) ’:’, which means a slice covering that entire dimension

(e) Ellipsis (...), which means to fill the slice list with ’:’ leav-
ing only enough room at the end for the remaining positional
arguments

(f) a Python slice object, of the form slice(i,j,k)

If there are fewer slices than corresponding dimensions, all
values of the trailing dimensions are read.

The keyword arguments are defined as in subRegion.

There must be no conflict between the positional arguments
and the keywords.

In (a)-(c) and (f), negative numbers are treated as offsets from
the end of that dimension, as in normal Python indexing.

String typecode()

The Numeric datatype identifier.

Table 2.35 Variable Methods

Type Definition
Climate Data Management System

Variable
data = ta.subRegion(’:’, (-45.0,45.0,’co’), (0.0, 180.0))

or equivalently:

data = ta.subRegion(latitude=(-45.0,45.0,’co’), longitude=(0.0,
180.0)

Read all data for March, 1980:

data = ta.subRegion(time=(’1980-3’,’1980-4’,’co’))

Table 2.36 Variable Slice Operators

[i] The ith element, zero-origin indexing.

[i:j] The ith element through, but not including, element j

[i:] The ith element through the end

[:j] The beginning element through, but not including, element j

[:] The entire array

[i:j:k] Every kth element

[i:j, m:n] Multidimensional slice

[i, ..., m] (Ellipsis) All dimensions between those specified.

[-1] Negative indices 'wrap around'. -1 is the last element.

Table 2.37 Index and Coordinate Intervals

Interval Definition Example

x single point, such that axis[i]==x

In general x is a scalar. If the axis is a time
axis, x may also be a cdtime relative time type,
component time type, or string of the form
’yyyy-mm-dd hh:mi:ss’ (where trailing fields
of the string may be omitted.

180.0

cdtime.rel-
time(48,”hour
s since 1980-
1”)

’1980-1-3’

(x,y) indices i such that x <= axis[i] <= y (-180,180)
Climate Data Management System 101

CDMS Python Application Programming Interface

102
2.11.1 Selectors

A selector is a specification of a region of data to be selected from a
variable. For example, the statement

x = v(time=’1979-1-1’, level=(1000.0,100.0))

means ‘select the values of variable v for time ’1979-1-1’ and levels 1000.0
to 100.0 inclusive, setting x to the result.’ Selectors are generally used to
represent regions of space and time.

The form for using a selector is

result = v(s)

where v is a variable and s is the selector. An equivalent form is

result = f(‘varid’, s)

where f is a file or dataset, and ‘varid’ is the string ID of a variable.

(x,y,'co') x <= axis[i] < y
The third item is defined as in mapInterval.

(-90,90,'cc')

(x,y,'co',cy
cle)

x<= axis[i] < y, with wraparound
Note: It is not necesary to specify the cycle of
a circular longitude axis, that is, for which
axis.isCircular() is true.

(180, 180,
'co', 360.0)

slice(i,j,k) slice object, equivalent to i:j:k in a slice opera-
tor. Refers to the indices i, i+k, i+2k, ... up to
but not including index j. If i is not specified
or is None it defaults to 0. If j is not specified
or is None it defaults to the length of the axis.
The stride k defaults to 1. k may be negative.

slice(1,10)

slice(,,-1)
reverses the
direction of
the axis.

':' all axis values of one dimension

Ellipsis all values of all intermediate axes

Table 2.37 Index and Coordinate Intervals

Interval Definition Example
Climate Data Management System

Variable
A selector consists of a list of selector components. For example, the selec-
tor

time=’1979-1-1’, level=(1000.0,100.0)

has two components: time=’1979-1-1’, and level=(1000.0,100.0). This
illustrates that selector components can be defined with keywords, using the
form:

keyword=value

Note that for the keywords time, level, latitude, and longitude, the selec-
tor can be used with any variable. If the corresponding axis is not found, the
selector component is ignored. This is very useful for writing general pur-
pose scripts. The required keyword overrides this behavior. These key-
words take values that are coordinate ranges or index ranges as defined in
Table 2.37 on page 101.

The following keywords are available:

Table 2.38 Selector keywords

Keyword Description Value

axisid Restrict the axis with ID axisid to
a value or range of values.

See Table 2.37 on page 101

grid Regrid the result to the grid. Grid object

latitude Restrict latitude values to a value
or range. Short form: lat

See Table 2.37 on page 101

level Restrict vertical levels to a value
or range. Short form: lev

See Table 2.37 on page 101

longitude Restrict longitude values to a
value or range. Short form: lon

See Table 2.37 on page 101

order Reorder the result. Order string, e.g., “tzyx”

raw Return a masked array
(MA.array) rather than a tran-
sient variable.

0: return a transient variable
(default); =1: return a
masked array.
Climate Data Management System 103

CDMS Python Application Programming Interface

104
Another form of selector components is the positional form, where the com-
ponent order corresponds to the axis order of a variable. For example:

x9 = hus((’1979-1-1’,’1979-2-1’),1000.0)

reads data for the range (’1979-1-1’,’1979-2-1’) of the first axis, and coor-
dinate value 1000.0 of the second axis. Non-keyword arguments of the
form(s) listed in Table 2.37 on page 101 are treated as positional. Such
selectors are more concise, but not as general or flexible as the other types
described in this section.

Selectors are objects in their own right. This means that a selector can be
defined and reused, independent of a particular variable. Selectors are con-
structed using the cdms.selectors.Selector class. The constructor takes an
argument list of selector components. For example:

from cdms.selectors import Selector
sel = Selector(time=(’1979-1-1’,’1979-2-1’), level=1000.)
x1 = v1(sel)
x2 = v2(sel)

For convenience CDMS provides several predefined selectors, which can
be used directly or can be combined into more complex selectors. The
selectors time, level, latitude, longitude, and required are equivalent to
their keyword counterparts. For example:

from cdms import time, level
x = hus(time(’1979-1-1’,’1979-2-1’), level(1000.))

and

required Require that the axis IDs be
present.

List of axis identifiers.

squeeze Remove singleton dimensions
from the result.

0: leave singleton dimen-
sions (default); 1: remove
singleton dimensions.

time Restrict time values to a value or
range.

See Table 2.37 on page 101

Table 2.38 Selector keywords

Keyword Description Value
Climate Data Management System

Variable
x = hus(time=(’1979-1-1’,’1979-2-1’), level=1000.)

are equivalent. Additionally, the predefined selectors latitudeslice, lon-
gitudeslice, levelslice, and timeslice take arguments (startindex, stopin-
dex[, stride]):

from cdms import timeslice, levelslice
x = v(timeslice(0,2), levelslice(16,17))

Finally, a collection of selectors is defined in module cdutil.region:

from cdutil.region import *
NH=NorthernHemisphere=domain(latitude=(0.,90.)
SH=SouthernHemisphere=domain(latitude=(-90.,0.))
Tropics=domain(latitude=(-23.4,23.4))
NPZ=AZ=ArcticZone=domain(latitude=(66.6,90.))
SPZ=AAZ=AntarcticZone=domain(latitude=(-90.,-66.6))

Selectors can be combined using the & operator, or by refining them in the
call:

from cdms.selectors import Selector
from cdms import level
sel2 = Selector(time=(’1979-1-1’,’1979-2-1’))
sel3 = sel2 & level(1000.0)
x1 = hus(sel3)
x2 = hus(sel2, level=1000.0)

2.11.2 Selector examples

CDMS provides a variety of ways to select or slice data. In the fol-
lowing examples, variable ‘hus’ is contained in file sample.nc, and is a
function of (time, level, latitude, longitude). Time values are monthly start-
ing at 1979-1-1. There are 17 levels, the last level being 1000.0. The name
of the vertical level axis is ‘plev’. All the examples select the first two times
and the last level. The last two examples remove the singleton level dimen-
sion from the result array.

import cdms

f = cdms.open(’sample.nc’)
hus = f.variables[’hus’]

Keyword selection
x = hus(time=(’1979-1-1’,’1979-2-1’), level=1000.)
Climate Data Management System 105

CDMS Python Application Programming Interface

106
Interval indicator (see mapIntervalExt)
x = hus(time=(’1979-1-1’,’1979-3-1’,’co’), level=1000.)

Axis ID (plev) as a keyword
x = hus(time=(’1979-1-1’,’1979-2-1’), plev=1000.)

Positional
x9 = hus((’1979-1-1’,’1979-2-1’),1000.0)

Predefined selectors
from cdms import time, level
x = hus(time(’1979-1-1’,’1979-2-1’), level(1000.))

from cdms import timeslice, levelslice
x = hus(timeslice(0,2), levelslice(16,17))

Call file as a function
x = f(’hus’, time=(’1979-1-1’,’1979-2-1’), level=1000.)

Python slices
x = hus(time=slice(0,2), level=slice(16,17))

Selector objects
from cdms.selectors import Selector
sel = Selector(time=(’1979-1-1’,’1979-2-1’), level=1000.)
x = hus(sel)

sel2 = Selector(time=(’1979-1-1’,’1979-2-1’))
sel3 = sel2 & level(1000.0)
x = hus(sel3)
x = hus(sel2, level=1000.0)

Squeeze singleton dimension (level)
x = hus[0:2,16]
x = hus(time=(’1979-1-1’,’1979-2-1’), level=1000., squeeze=1)

f.close()

2.12 Examples

In this example, two datasets are opened, containing surface air tem-
perature (‘tas’) and upper-air temperature (‘ta’) respectively. Surface air
temperature is a function of (time, latitude, longitude). Upper-air tempera-
ture is a function of (time, level, latitude, longitude). Time is assumed to
Climate Data Management System

Examples

11

12

13

14

15

16
have a relative representation in the datasets (e.g., with units “months since
basetime”).

Data is extracted from both datasets for January of the first input year
through December of the second input year. For each time and level, three
quantities are calculated: slope, variance, and correlation. The results are
written to a netCDF file. For brevity, the functions corrCoefSlope and
removeSeasonalCycle are omitted.

import cdms
import MV

Calculate variance, slope, and correlation of
surface air temperature with upper air temperature
by level, and save to a netCDF file. ’pathTa’ is the location of
the file containing ta, ’pathTas’ is the file with contains tas.
Data is extracted from January of year1 through December of year2.
def ccSlopeVarianceBySeasonFiltNet(pathTa,pathTas,month1,month2):

 # Open the files for ta and tas
 fta = cdms.open(pathTa)
 ftas = cdms.open(pathTas)

 # Get upper air temperature
 taObj = fta[’ta’]
 levs = taObj.getLevel()

 # Get the surface temperature for the closed interval [time1,time2]
 tas = ftas(’tas’, time=(month1,month2,’cc’))

 # Allocate result arrays
 newaxes = taObj.getAxisList(omit=’time’)
 newshape = tuple([len(a) for a in newaxes])
 cc = MV.zeros(newshape, typecode=MV.Float, axes=newaxes, id=’correlation’)
 b = MV.zeros(newshape, typecode=MV.Float, axes=newaxes, id=’slope’)
 v = MV.zeros(newshape, typecode=MV.Float, axes=newaxes, id=’variance’)

 # Remove seasonal cycle from surface air temperature
 tas = removeSeasonalCycle(tas)

 # For each level of air temperature, remove seasonal cycle
 # from upper air temperature, and calculate statistics
 for ilev in range(len(levs)):
 ta = taObj(time=(month1,month2,’cc’), \

 level=slice(ilev, ilev+1), squeeze=1)
 ta = removeSeasonalCycle(ta)
 cc[ilev], b[ilev] = corrCoefSlope(tas ,ta)
 v[ilev] = MV.sum(ta**2)/(1.0*ta.shape[0])

 # Write slope, correlation, and variance variables
 f = cdms.open(’CC_B_V_ALL.nc’,’w’)
 f.title = ’filtered’
 f.write(b)
 f.write(cc)
 f.write(v)
 f.close()
Climate Data Management System 107

CDMS Python Application Programming Interface

108

7

8

if __name__==’__main__’:
 pathTa = ’/pcmdi/cdms/sample/ccmSample_ta.xml’
 pathTas = ’/pcmdi/cdms/sample/ccmSample_tas.xml’
 # Process Jan80 through Dec81
 ccSlopeVarianceBySeasonFiltNet(pathTa,pathTas,’80-1’,’81-12’)

Notes:

1. Two modules are imported, cdms, and MV. MV implements arithmetic func-
tions.

2. taObj is a file (persistent) variable. At this point, no data has actually been read.
This happens when the file variable is sliced, or when the subRegion function is
called. levs is an axis.

3. Calling the file like a function reads data for the given variable and time range.
Note that month1 and month2 are time strings.

4. In contrast to taObj, the variables cc, b, and v are transient variables, not asso-
ciated with a file. The assigned names are used when the variables are written.

5. Another way to read data is to call the variable as a function. The squeeze
option removes singleton axes, in this case the level axis.

6. Write the data. Axis information is written automatically.

7. This is the main routine of the script. pathTa and pathTas pathnames. Data is
processed from January 1980 through December 1981.

In the next example, the pointwise variance of a variable over time is calcu-
lated, for all times in a dataset. The name of the dataset and variable are
entered, then the variance is calculated and plotted via the vcs module.

#!/usr/bin/env python
#
Calculates gridpoint total variance
from an array of interest
#

import cdms
from MV import *

Wait for return in an interactive window
def pause():
 print ’Hit return to continue: ’,
 line = sys.stdin.readline()

Calculate pointwise variance of variable over time
Returns the variance and the number of points
for which the data is defined, for each grid point
def calcVar(x):
Climate Data Management System

Examples

9

10

11
 # Check that the first axis is a time axis
 firstaxis = x.getAxis(0)
 if not firstaxis.isTime():
 raise ’First axis is not time, variable:’, x.id

 n = count(x,0)
 sumxx = sum(x*x)
 sumx = sum(x)
 variance = (n*sumxx - (sumx * sumx))/(n * (n-1.))

 return variance,n

if __name__==’__main__’:
 import vcs, sys

 print ’Enter dataset path [/pcmdi/cdms/obs/erbs_mo.xml]: ’,
 path = string.strip(sys.stdin.readline())
 if path==’’: path=’/pcmdi/cdms/obs/erbs_mo.xml’

 # Open the dataset
 dataset = cdms.open(path)

 # Select a variable from the dataset
 print ’Variables in file:’,path
 varnames = dataset.variables.keys()
 varnames.sort()
 for varname in varnames:
 var = dataset.variables[varname]
 if hasattr(var,’long_name’):
 long_name = var.long_name
 elif hasattr(var,’title’):
 long_name = var.title
 else:
 long_name = ’?’
 print ’%-10s: %s’%(varname,long_name)
 print ’Select a variable: ’,
 varname = string.strip(sys.stdin.readline())
 var = dataset(varname)
 dataset.close()

 # Calculate variance, count, and set attributes
 variance,n = calcVar(var)
 variance.id = ’variance_%s’%var.id
 n.id = ’count_%s’%var.id
 if hasattr(var,’units’):
 variance.units = ’(%s)^2’%var.units

 # Plot variance
 w=vcs.init()
 w.plot(variance)
 pause()
 w.clear()
 w.plot(n)
 pause()
 w.clear()

The result of running this script is as follows:
Climate Data Management System 109

CDMS Python Application Programming Interface

110
% calcVar.py
Enter dataset path [/pcmdi/cdms/sample/obs/erbs_mo.xml]:
 Variables in file: /pcmdi/cdms/sample/obs/erbs_mo.xml
albt : Albedo TOA [%]
albtcs : Albedo TOA clear sky [%]
rlcrft : LW Cloud Radiation Forcing TOA [W/m^2]
rlut : LW radiation TOA (OLR) [W/m^2]
rlutcs : LW radiation upward TOA clear sky [W/m^2]
rscrft : SW Cloud Radiation Forcing TOA [W/m^2]
rsdt : SW radiation downward TOA [W/m^2]
rsut : SW radiation upward TOA [W/m^2]
rsutcs : SW radiation upward TOA clear sky [W/m^2]
Select a variable: albt

<The variance is plotted>

Hit return to continue:

<The number of points is plotted>

Notes:

8. n = count(x, 0) returns the pointwise number of valid values, summing across
axis 0, the first axis. count is an MV function.

9. dataset is a Dataset or CdmsFile object, depending on whether a .xml or .nc
pathname is entered. dataset.variables is a dictionary mapping variable
name to file variable.

10. var is a transient variable.

11. Plot the variance and count variables. Spatial longitude and latitude information
are carried with the computations, so the continents are plotted correctly.
Climate Data Management System

CHAPTER 3 cdtime Module
3.1 Time types

The cdtime module implements the CDMS time types, methods, and
calendars. These are made available with the command

import cdtime

Two time types are available: relative time and component time. Relative
time is time relative to a fixed base time. It consists of:

• a units string, of the form “units since basetime”, and

• a floating-point value

For example, the time “28.0 days since 1996-1-1” has value=28.0, and
units=”days since 1996-1-1”

Component time consists of the integer fields year, month, day, hour,
minute, and the floating-point field second. A sample component time is
1996-2-28 12:10:30.0
Climate Data Management System 111

cdtime Module

112
The cdtime module contains functions for converting between these forms,
based on the common calendars used in climate simulation. Basic arith-
metic and comparison operators are also available.

3.2 Calendars

A calendar specifies the number of days in each month, for a given
year. cdtime supports these calendars:

• cdtime.GregorianCalendar: years evenly divisible by four are leap years,
except century years not evenly divisible by 400. This is sometimes called the
proleptic Gregorian calendar, meaning that the algorithm for leap years applies
for all years.

• cdtime.MixedCalendar: mixed Julian/Gregorian calendar. Dates before 1582-
10-15 are encoded with the Julian calendar, otherwise are encoded with the Gre-
gorian calendar. The day immediately following 1582-10-4 is 1582-10-15. This
is the default calendar.

• cdtime.JulianCalendar: years evenly divisible by four are leap years,

• cdtime.NoLeapCalendar: all years have 365 days,

• cdtime.Calendar360: all months have 30 days.

Several cdtime functions have an optional calendar argument. The default
calendar is the MixedCalendar. The default calendar may be changed with
the command:

cdtime.DefaultCalendar = newCalendar

3.3 Time Constructors

The following table describes the methods for creating time types.
Climate Data Management System

Time Constructors
Table 3.1 Time Constructors

Type Definition

Reltime cdtime.reltime(value, relunits)

Create a relative time type.

value is an integer or floating point value.

relunits is a string of the form “unit(s) [since basetime]”
where

unit = [second | minute | hour | day | week | month |
season | year]

basetime has the form yyyy-mm-dd hh:mi:ss. The default
basetime is 1979-1-1, if no since clause is specified.

Example:

r = cdtime.reltime(28, “days since 1996-1-1”)

Comptime cdtime.comptime(year, month=1, day=1, hour=0,
minute=0, second=0.0)

Create a component time type.

year is an integer.

month is an integer in the range 1 .. 12

day is an integer in the range 1 .. 31

hour is an integer in the range 0 .. 23

minute is an integer in the range 0 .. 59

second is a floating point number in the range 0.0 ,, 60.0

Example: c = cdtime.comptime(1996, 2, 28)
Climate Data Management System 113

cdtime Module

114
3.4 Relative Time

A relative time type has two members, value and units. Both can be
set.

Comptime [Deprecated] cdtime.abstime(absvalue, absunits)

Create a component time from an absolute time representation.

absvalue is a floating-point encoding of an absolute time.

absunits is the units template, a string of the form “unit as
format", where unit is one of second, minute, hour, day,
calendar_month, or calendar_year. format is a string of
the form "%x[%x[...]][.%f]", where x is one of the format
letters ’Y’ (year, including century), ’m’ (two digit month,
01=January), ’d’ (two-digit day within month), ’H’ (hours
since midnight), ’M’ (minutes), or ’S’ (seconds). The optional
’.%f’ denotes a floating-point fraction of the unit.

Example: c = cdtime.abstime(19960228.0, “day as
%Y%m%d.%f”)

Table 3.2 Relative Time Members

Type Name Summary

Float value Number of units

String units Relative units, of the form “unit(s) since
basetime”

Table 3.1 Time Constructors

Type Definition
Climate Data Management System

Component Time
3.5 Component Time

A component time type has six members, all of which are settable.

3.6 Time Methods

The following methods apply both to relative and component times.

Table 3.3 Component Time Members

Type Name Summary

Integer year Year value

Integer month Month, in the range 1..12

Integer day Day of month, in the range 1 .. 31

Integer hour Hour, in the range 0 .. 23

Integer minute Minute, in the range 0 .. 59

Float second Seconds, in the range 0.0 .. 60.0
Climate Data Management System 115

cdtime Module

116
Table 3.4 Time Methods

Type Definition

Comptime
or Reltime

t.add(value, intervalUnits, calendar=cdtime.Default-
Calendar)

Add an interval of time to a time type t. Returns the same type
of time.

value is the Float number of interval units.

intervalUnits is cdtime.[Second(s) | Minute(s) | Hour(s)
| Day(s) | Week(s) | Month(s) | Season(s) | Year(s)]

calendar is the calendar type.

Example:

>>> from cdtime import *
>>> c = comptime(1996,2,28)
>>> r = reltime(28,"days since 1996-1-1")
>>> print r.add(1,Day)
29.00 days since 1996-1-1
>>> print c.add(36,Hours)
1996-2-29 12:0:0.0

Note: When adding or subtracting intervals of months or
years, only the month and year of the result are significant.
The reason is that intervals in months/years are not commen-
surate with intervals in days or fractional days. This leads to
results that may be surprising. For example:

>>> c = comptime(1979,8,31)
>>> c.add(1,Month)
1979-9-1 0:0:0.0

In other words, the day component of c was ignored in the
addition, and the day/hour/minute components of the results
are just the defaults. If the interval is in years, the interval is
converted internally to months:

>>> c = comptime(1979,8,31)
>>> c.add(2,Years)
1981-8-1 0:0:0.0
Climate Data Management System

Time Methods
Integer t.cmp(t2, calendar=cdtime.DefaultCalendar)

Compare time values t and t2. Returns -1, 0, 1 as t is less than,
equal to, or greater than t2 respectively.

t2 is the time to compare.

calendar is the calendar type.

Example:

>>> from cdtime import *
>>> r = cdtime.reltime(28,"days since 1996-1-1")
>>> c = comptime(1996,2,28)
>>> print r.cmp(c)
-1
>>> print c.cmp(r)
1
>>> print r.cmp(r)
0

Comptime
or Reltime

t.sub(value, intervalUnits, calendar=cdtime.Default-
Calendar)

Subtract an interval of time from a time type t. Returns the
same type of time.

value is the Float number of interval units.

intervalUnits is cdtime.[Second(s) | Minute(s) | Hour(s)
| Day(s) | Week(s) | Month(s) | Season(s) | Year(s)]

calendar is the calendar type.

Example:

>>> from cdtime import *
>>> r = cdtime.reltime(28,"days since 1996-1-1")
>>> c = comptime(1996,2,28)
>>> print r.sub(10,Days)
18.00 days since 1996-1-1
>>> print c.sub(30,Days)
1996-1-29 0:0:0.0

For intervals of years or months, see the note under add().

Table 3.4 Time Methods

Type Definition
Climate Data Management System 117

cdtime Module

118
Comptime t.tocomp(calendar = cdtime.DefaultCalendar)

Convert to component time. Returns the equivalent component
time.

calendar is the calendar type.

Example:

>>> r = cdtime.reltime(28,"days since 1996-1-1")
>>> r.tocomp()
1996-1-29 0:0:0.0

Reltime t.torel(units, calendar=cdtime.DefaultCalendar)

Convert to relative time. Returns the equivalent relative time.

Example:

>>> c = comptime(1996,2,28)
>>> print c.torel("days since 1996-1-1")
58.00 days since 1996-1-1
>>> r = reltime(28,"days since 1996-1-1")
>>> print r.torel("days since 1995")
393.00 days since 1995
>>> print r.torel("days since 1995").value
393.0

Table 3.4 Time Methods

Type Definition
Climate Data Management System

CHAPTER 4 Regridding Data
4.1 Overview

CDMS provides several methods for interpolating gridded data:

• from one rectangular, lat-lon grid to another (CDMS regridder)

• between any two lat-lon grids (SCRIP regridder)

• from one set of pressure levels to another

• from one vertical (lat/level) cross-section to another vertical cross-section.

4.1.1 CDMS horizontal regridder

The simplest method to regrid a variable from one rectangular, lat/lon grid
to another is to use the regrid function defined for variables. This function
takes the target grid as an argument, and returns the variable regridded to
the target grid:

>>> import cdms
>>> f = cdms.open(’/pcmdi/cdms/exp/cmip2/ccc/perturb.xml’)
>>> rlsf = f(’rls’) # Read the data
>>> rlsf.shape
(4, 48, 96)
Climate Data Management System 119

Regridding Data

120
>>> g = cdms.open(’/pcmdi/cdms/exp/cmip2/mri/perturb.xml’)
>>> rlsg = g[’rls’] # Get the file variable (no data read)
>>> outgrid = rlsg.getGrid() # Get the target grid
>>> rlsnew = rlsf.regrid(outgrid)
>>> rlsnew.shape
(4, 46, 72)
>>> outgrid.shape
(46, 72)

A somewhat more efficient method is to create a regridder function. This
has the advantage that the mapping is created only once and can be used for
multiple arrays. Also, this method can be used with data in the form of an
MA.MaskedArray or Numeric array. The steps in this process are:

• Given an input grid and output grid, generate a regridder function.

• Call the regridder function on a Numeric array, resulting in an array defined on
the output grid. The regridder function can be called with any array or variable
defined on the input grid.

The following example illustrates this process. The regridder function is
generated at line 9, and the regridding is performed at line 10:

 1 #!/usr/bin/env python
 2 import cdms
 3 from regrid import Regridder
 4 f = cdms.open(’/pcmdi/cdms/exp/cmip2/ccc/perturb.xml’)
 5 rlsf = f[’rls’]
 6 ingrid = rlsf.getGrid()
 7 g = cdms.open(’/pcmdi/cdms/exp/cmip2/mri/perturb.xml’)
 8 outgrid = g[’rls’].getGrid()
 9 regridfunc = Regridder(ingrid, outgrid)
10 rlsnew = regridfunc(rlsf)
11 f.close()
12 g.close()

Line Notes

 2 Makes the CDMS module available.

 3 Makes the Regridder class available from the regrid module.
Climate Data Management System

Overview
4.1.2 SCRIP horizontal regridder

To interpolate between grids where one or both grids is non-rectangu-
lar, CDMS provides an interface to the SCRIP regridder package developed
at Los Alamos National Laboratory (http://climate.lanl.gov/Software/
SCRIP). Figure 3 illustrates the process:

• Obtain or generate the source and target grids in SCRIP netCDF format. A
CDMS grid can be written to a netCDF file, in SCRIP format, using the write-
ScripGrid method.

• Edit the input namelist file scrip_in to reference the grids and select the
method of interpolation, either conservative, bilinear, bicubic, or distance-
weighted. See the SCRIP documentation for detailed instructions.

• Run the scrip executable to generate a remapping file containing the transforma-
tion coefficients.

• In CDMS, open the remapping file and create a regridder function with the
readRegridder method.

• Call the regridder function on the input variable, defined on the source grid. The
return value is the variable interpolated to the new grid. Note that the variable

 4 Opens the input dataset.

 5 Gets the variable object named ‘rls’. No data is read.

 6 Gets the input grid.

 7 Opens a dataset to retrieve the output grid.

 8 The output grid is the grid associated with the variable named ‘rls’
in dataset g. Just the grid is retrieved, not the data.

 9 Generates a regridder function regridfunc.

10 Reads all data for variable rlsf, and calls the regridder function on
that data, resulting in a transient variable rlsnew.

Line Notes
Climate Data Management System 121

Regridding Data

122
may have more than two dimensions. Also note that the input arguments to the
regridder function depend on the type of regridder. For example, the bicubic
interpolation has additional arguments for the gradients of the variable.

Example: Regrid data from a T42 to POP4/3 grid, using the first-order,
conservative interpolator.

In this example:

• The input grid is defined in remap_grid_T42.nc.

• The output grid is defined in remap_grid_POP43.nc.

• The input data is variable src_array in file sampleT42Grid.nc.

• The file scrip_in has contents:

&remap_inputs
 num_maps = 1

FIGURE 3. Regridding data with SCRIP

scrip

Regridder

regrid.readRegridder()

Grids
(SCRIP

Regridded
data

CDMS grid
classes

Input data

Remapping file

file.readScripGrid()
cdms.writeScripGrid()

CDMS

scrip_in

SCRIP
Climate Data Management System

Overview
 grid1_file = 'remap_grid_T42.nc'
 grid2_file = 'remap_grid_POP43.nc'
 interp_file1 = 'rmp_T42_to_POP43_conserv.nc'
 interp_file2 = 'rmp_POP43_to_T42_conserv.nc'
 map1_name = 'T42 to POP43 Conservative Mapping'
 map2_name = 'POP43 to T42 Conservative Mapping'
 map_method = 'conservative'
 normalize_opt = 'frac'
 output_opt = 'scrip'
 restrict_type = 'latitude'
 num_srch_bins = 90
 luse_grid1_area = .false.
 luse_grid2_area = .false.
/

num_maps specifies the number of mappings generated, either 1 or 2. For a
single mapping, grid1_file and grid2_file are the source and target grid
definitions, respectively. The map_method specifies the type of interpolation,
either ‘conservative’, ‘bilinear’, ‘bicubic’, or ‘distwgt’ (distance-
weighted). The remaining parameters are described in the SCRIP documen-
tation.

Once the grids and input file are defined, run the scrip executable to gener-
ate the remapping file rmp_T42_to_POP43_conserv.nc:

% scrip
 Using latitude bins to restrict search.
 Computing remappings between:
 T42 Gaussian Grid
 and
 POP 4/3 Displaced-Pole T grid
 grid1 sweep
 grid2 sweep
 Total number of links = 63112

Next, run CDAT and create the regridder:

Import regrid package for regridder functions
import regrid, cdms

Read the regridder from the remapper file
remapf = cdms.open('rmp_T42_to_POP43_conserv.nc')
regridf = regrid.readRegridder(remapf)
remapf.close()

Then read the input data and regrid:

Get the source variable
f = cdms.open('sampleT42Grid.nc')
t42dat = f('src_array')
f.close()
Climate Data Management System 123

Regridding Data

124
Regrid the source variable
popdat = regridf(dat)

Note that t42dat can have rank greater than 2. The trailing dimensions must
match the input grid shape. For example, if t42dat has shape (12, 64, 128),
then the input grid must have shape (64,128). Similarly if the variable had a
generic grid with shape (8092,), the last dimension of the variable would
have length 8092.

4.1.3 Pressure-level regridder

To regrid a variable which is a function of latitude, longitude, pres-
sure level, and (optionally) time to a new set of pressure levels, use the
pressureRegrid function defined for variables. This function takes an axis
representing the target set of pressure levels, and returns a new variable d
regridded to that dimension.

>>> var.shape
(3, 16, 32)
>>> var.getAxisIds()
[’level’, ’latitude’, ’longitude’]
>>> len(levout)
2
>>> result = var.pressureRegrid(levout)
>>> result.shape
(2, 16, 32)

4.1.4 Cross-section regridder

To regrid a variable which is a function of latitude, height, and
(optionally) time to a new latitude/height cross-section, use the crossSec-
tionRegridder defined for variables. This function takes as arguments the
new latitudes and heights, and returns the variable regridded to those axes.

>>> varin.shape
(11, 46)
>>> varin.getAxisIds()
[’level’, ’latitude’]
>>> levOut[:]
[10., 30., 50., 70., 100., 200., 300., 400., 500.,

700., 850.,
 1000.,]
>>> varout = varin.crossSectionRegrid(levOut, latOut)
>>> varout.shape
Climate Data Management System

regrid module
(12, 64)

4.2 regrid module

The regrid module implements the CDMS regridding functionality as
well as the SCRIP interface. Although this module is not strictly a part of
CDMS, it is designed to work with CDMS objects.

4.2.1 CDMS horizontal regridder

The Python command

from regrid import Regridder

makes the CDMS Regridder class available within a Python program. An
instance of Regridder is a function which regrids data from rectangular
input to output grids.

4.2.2 SCRIP Regridder

SCRIP regridder functions are created with the regrid.readRegrid-
der function :

Table 4.1 CDMS Regridder Constructor

regridFunction = Regridder(inputGrid, outputGrid)

Create a regridder function which interpolates a data array from input to out-
put grid. Table 4.3 on page 129 describes the calling sequence of this function.

inputGrid and outputGrid are CDMS grid objects.

Note: To set the mask associated with inputGrid or outputGrid, use the grid
setMask function.
Climate Data Management System 125

Regridding Data

126
4.3 regridder functions

4.3.1 CDMS regridder functions

A CDMS regridder function is an instance of the CDMS Regridder
class. The function is associated with rectangular input and output grids.
Typically its use is straightforward: the function is passed an input array and
returns the regridded array. However, when the array has missing data, or
the input and/or output grids are masked, the logic becomes more compli-
cated.

Table 4.2 SCRIP Regridder Constructor

regridFunction = regrid.readRegridder(fileobj, mapMethod=None,
checkGrid=1)

Read a regridder from an open CDMS file object.

fileobj is a CDMS file object, as returned from cdms.open.

mapMethod is one of

• ‘conservative’ : conservative remapper, suitable where area-integrated
fields such as water or heat fluxes must be conserved.

• ‘bilinear’ : bilinear interpolation

• ‘bicubic’ : bicubic interpolation

• ‘distwgt’ : distance-weighted interpolation.

It is only necessary to specify the map method if it is not defined in the
file.

If checkGrid is 1 (default), the grid cells are checked for convexity,
and 'repaired' if necessary. Grid cells may appear to be nonconvex if they cross
a 0 / 2pi boundary. The repair consists of shifting the cell vertices to the same
side modulo 360 degrees.
Climate Data Management System

regridder functions
Step 1: The regridder function first forms an input mask. This mask is either
two-dimensional or ‘n-dimensional’, depending on the rank of the user-sup-
plied mask. If no mask or missing value is specified, the mask is obtained
from the data array mask if present.

Two-dimensional case:

•Let mask_1 be the two-dimensional user mask supplied via the mask argu-
ment, or the mask of the input grid if no user mask is specified.

•If a missing-data value is specified via the missing argument, let the
implicit_mask be the two-dimensional mask defined as 0 where the first hori-
zontal slice of the input array is missing, 1 elsewhere.

•The input mask is the logical AND(mask_1, implicit_mask)

N-dimensional case: If the user mask is 3 or 4-dimensional with the
same shape as the input array, it is used as the input mask.

Step 2: The data is then regridded. In the two-dimensional case, the input
mask is ‘broadcast’ across the other dimensions of the array. In other words,
it assumes that all horizontal slices of the array have the same mask. The
result is a new array, defined on the output grid. Optionally, the regridder
function can also return an array having the same shape as the output array,
defining the fractional area of the output array which overlaps a non-miss-
ing input grid cell. This is useful for calculating area-weighted means of
masked data.

Step 3: Finally, if the output grid has a mask, it is applied to the result array.
Where the output mask is 0, data values are set to the missing data value, or
1.0e20 if undefined. The result array or transient variable will have a mask
value of 1 (invalid value) for those output grid cells which completely over-
lap input grid cells with missing values.
Climate Data Management System 127

Regridding Data

128
 Climate Data Management System

regridder functions
Table 4.3 CDMS Regridder function

Type

Array or
Transient-
Variable

regridFunction(array, missing=None, order=None,
mask=None)

Interpolate a gridded data array to a new grid. The interpola-
tion preserves the area-weighted mean on each horizontal
slice. If array is a Variable, a TransientVariable of the same
rank as the input array is returned, otherwise a masked array is
returned.

array is a Variable, masked array, or Numeric array of rank 2,
3, or 4.

missing is a Float specifying the missing data value. The
default is 1.0e20.

order is a string indicating the order of dimensions of the
array. It has the form returned from variable.getOrder(). For
example, the string “tzyx” indicates that the dimension order
of array is (time, level, latitude, longitude). If unspecified, the
function assumes that the last two dimensions of array match
the input grid.

mask is a Numeric array, of datatype Integer or Float, consist-
ing of a fractional number between 0 and 1. A value of 1 or 1.0
indicates that the corresponding data value is to be ignored for
purposes of regridding. A value of 0 or 0.0 indicates that the
corresponding data value is valid. This is consistent with the
convention for masks used by the MA module. A fractional
value between 0.0 and 1.0 indicates the fraction of the data
value (e.g., the corresponding cell) to be ignored when regrid-
ding. This is useful if a variable is regridded first to grid A and
then to another grid B; the mask when regridding from A to B
would be (1.0 - f) where f is the maskArray returned from the
initial grid operation using the returnTuple argument.

If mask is two-dimensional of the same shape as the input grid,
it overrides the mask of the input grid. If the mask has more
than two dimensions, it must have the same shape as array. In
this case, the missing data value is also ignored. Such an n-
dimensional mask is useful if the pattern of missing data varies
with level (e.g., ocean data) or time.
Note: If neither missing or mask is set, the default mask is
Climate Data Management System 129
obtained from the mask of the array if any.

Regridding Data

130
4.3.2 SCRIP Regridder functions

A SCRIP regridder function is an instance of the ScripRegridder
class. Such a function is created by calling the regrid.readRegridder
method. Typical usage is straightforward:

>>> regridf = regrid.readRegridder(remap_file)
>>> outdat = regridf(indat)

The bicubic regridder takes four arguments:

>>> outdat = regridf(indat, gradlat, gradlon, gradlatlon)

A regridder function also has associated methods to retrieve the following
fields:

• Input grid

• Output grid

• Source fraction: the fraction of each source (input) grid cell participating in the
interpolation.

• Destination fraction: the fraction of each destination (output) grid cell partici-
pating in the interpolation.

Array, Array regridFunction(ar, missing=None, order=None,
mask=None, returnTuple=1)

If called with the optional returnTuple argument equal to 1, the
function returns a tuple (dataArray, maskArray). dataArray is
the result data array. maskArray is a Float32 array of the same
shape as dataArray, such that maskArray[i,j] is fraction of the
output grid cell [i,j] overlapping a non-missing cell of the
input grid.

Table 4.3 CDMS Regridder function

Type
Climate Data Management System

regridder functions
In addition, a conservative regridder has the associated grid cell areas for
source and target grids.

Table 4.4 SCRIP Regridder functions

Return Type

Array or
Transient-
Variable

[conservative, bilinear, and distance-weighted regrid-
ders]

regridFunction(array)

Interpolate a gridded data array to a new grid. The return value
is the regridded data variable.

array is a Variable, MaskedArray, or Numeric array. The rank
of the array may be greater than the rank of the input grid, in
which case the input grid shape must match a trailing portion
of the array shape. For example, if the input grid is curvilinear
with shape (64,128), the last two dimensions of the array must
match. Similarly, if the input grid is generic with shape
(2560,), the last dimension of the array must have that length.
Climate Data Management System 131

Regridding Data

132
Array or
Transient-
Variable

[bicubic regridders]

regridFunction(array, gradientLat, gradientLon, gra-
dientLatLon)

Interpolate a gridded data array to a new grid, using a bicubic
regridder. The return value is the regridded data variable.

array is a Variable, MaskedArray, or Numeric array. The rank
of the array may be greater than the rank of the input grid, in
which case the input grid shape must match a trailing portion
of the array shape. For example, if the input grid is curvilinear
with shape (64,128), the last two dimensions of the array must
match. Similarly, if the input grid is generic with shape
(2560,), the last dimension of the array must have that length.

gradientLat: df/di (see the SCRIP documentation). Same
shape as array.

gradientLon: df/dj. Same shape as array.

gradientLatLon: d(df)/(di)(dj). Same shape as array.

Numeric
array

getDestinationArea()

[conservative regridders only]

Return the area of the destination (output) grid cell. The array
is 1-D, with length equal to the number of cells in the output
grid.

Numeric
array

getDestinationFraction()

Return the area fraction of the destination (output) grid cell
that participates in the regridding. The array is 1-D, with
length equal to the number of cells in the output grid.

CurveGrid
or Generic-
Grid

getInputGrid()

Return the input grid, or None if no input grid is associated
with the regridder.

Table 4.4 SCRIP Regridder functions

Return Type
Climate Data Management System

Examples
4.4 Examples

4.4.1 CDMS regridder

Example: Regrid data to a uniform output grid.

 1 #!/usr/local/bin/python
 2 import cdms
 3 from regrid import Regridder
 4 f = cdms.open(’rls_ccc_per.nc’)
 5 rlsf = f.variables[’rls’]
 6 ingrid = rlsf.getGrid()
 7 outgrid = cdms.createUniformGrid(90.0, 46, -4.0, 0.0, 72, 5.0)
 8 regridFunc = Regridder(ingrid, outgrid)
 9 newrls = regridFunc(rlsf)

CurveGrid
or Generic-
Grid

getOutputGrid()

Return the output grid.

Numeric
array

getSourceArea()

[conservative regridders only]

Return the area of the source (input) grid cell. The array is 1-
D, with length equal to the number of cells in the input grid.

Numeric
array

getSourceFraction()

Return the area fraction of the source (input) grid cell that par-
ticipates in the regridding. The array is 1-D, with length equal
to the number of cells in the input grid.

Table 4.4 SCRIP Regridder functions

Return Type
Climate Data Management System 133

Regridding Data

134
10 f.close()

Example: Get a mask from a separate file, and set as the input grid mask.

 1 import cdms
 2 from regrid import Regridder
 3 #
 4 f = cdms.open(’so_ccc_per.nc’)
 5 sof = f.variables[’so’]
 6 ingrid = sof.getGrid()
 7 g = cdms.open(’rls_mri_per.nc’)
 8 rlsg = g.variables[’rls’]
 9 outgrid = rlsg.getGrid()
10 regridFunc = Regridder(ingrid,outgrid)
11 h = cdms.open(’sft_ccc.nc’)
12 sfmaskvar = h.variables[’sfmask’]
13 sfmask = sfmaskvar[:]
14 outArray = regridFunc(sof.subSlice(time=0),mask=sfmask)
15 f.close()
16 g.close()
17 h.close()

Line Notes

 4 Open a netCDF file for input.

 7 Create a 4 x 5 degree output grid. Note that this grid is not associated
with a file or dataset

 8 Create the regridder function

 9 Read all data and regrid. The missing data value is obtained from
variable rlsf.

Line Notes

 6 Get the input grid.
Climate Data Management System

Examples
Example: Generate an array of zonal mean values.

 1 f = cdms.open(’rls_ccc_per.nc’)
 2 rlsf = f.variables[’rls’]
 3 ingrid = rlsf.getGrid()
 4 outgrid = cdms.createZonalGrid(ingrid)
 5 regridFunc = Regridder(ingrid,outgrid)
 6 mean = regridFunc(rlsf)
 7 f.close()

 9 Get the output grid

10 Create the regridder function.

13 Get the mask.

14 Regrid with a user mask. The subslice call returns a transient variable
corresponding to variable sof at time 0.

Note: Although it cannot be determined from the code, both mask and
the input array sof are four-dimensional. This is the ‘n-dimensional’
case.

Line Notes

 3 Get the input grid.

 4 Create a zonal grid. outgrid has the same latitudes as ingrid, and a
singleton longitude dimension. createGlobalMeanGrid could be
used here to generate a global mean array.

5 Generate the regridder function.

Line Notes
Climate Data Management System 135

Regridding Data

136
Example: Regrid an array with missing data, and calculate the area-
weighted mean of the result.

 1 from cdms.MV import *
 ...
 2 outgrid = cdms.createUniformGrid(90.0, 46, -4.0, 0.0, 72, 5.0)
 3 outlatw, outlonw = outgrid.getWeights()
 4 outweights = outerproduct(outlatw, outlonw)
 5 grid = var.getGrid()
 6 sample = var[0,0]
 7 latw, lonw = grid.getWeights()
 8 weights = outerproduct(latw, lonw)
 9 inmask = where(greater(absolute(sample),1.e15),0,1)
10 mean = add.reduce(ravel(inmask*weights*sample))/

add.reduce(ravel(inmask*weights))
11 regridFunc = Regridder(grid, outgrid)
12 outsample, outmask = regridFunc(sample, mask=inmask,

returnTuple=1)
13 outmean = add.reduce(ravel(outmask*outweights*outsample))/

add.reduce(ravel(outmask*outweights))

6 Generate the zonal mean array.

Line Notes

 2 Create a uniform target grid.

 3 Get the latitude and longitude weights.

 4 Generate a 2-D weights array.

 5 Get the input grid. var is a 4-D variable.

 6 Get the first horizontal slice from var.

 7-8 Get the input weights, and generate a 2-D weights array.

Line Notes
Climate Data Management System

Examples
4.4.2 SCRIP regridder

Example: Regrid from a curvilinear to a generic grid, using a conser-
vative remapping. Compute the area-weighted means on input and output
for comparison.

import cdms, regrid, MA

Open the SCRIP remapping file and data file
direc = ''
fremap = cdms.open(direc+'rmp_T42_to_C02562_conserv.nc')
fdat = cdms.open(direc+'sampleT42Grid.nc')

Input data array
dat = fdat('src_array')

Read the SCRIP regridder
regridf = regrid.readRegridder(fremap)

Regrid the variable
outdat = regridf(dat)

Get the cell area and fraction arrays. Areas are computed only
for conservative regridding.
srcfrac = regridf.getSourceFraction()
srcarea = regridf.getSourceArea()
dstfrac = regridf.getDestinationFraction()
dstarea = regridf.getDestinationArea()

Calculate area-weighted means
inmean = MA.sum(srcfrac*srcarea*MA.ravel(dat)) / MA.sum(srcfrac*srcarea)
outmean = MA.sum(dstfrac*dstarea*MA.ravel(outdat)) / MA.sum(dstfrac*dstarea)
print 'Input mean:', inmean
print 'Output mean:', outmean

fremap.close()
fdat.close()

 9 Set the 2-D input mask.

10 Calculate the input array area-weighted mean.

11 Create the regridder function.

12 Regrid. Because returnTuple is set to 1, the result is a tuple (dataAr-
ray, maskArray).

13 Calculate the area-weighted mean of the regridded data. mean and
outmean should be approximately equal.

Line Notes
Climate Data Management System 137

Regridding Data

138
 Climate Data Management System

CHAPTER 5 Plotting CDMS data in
Python
5.1 Overview

Data read via the CDMS Python interface can be plotted using the vcs
module. This module, part of the Climate Data Analysis Tool (CDAT) is
documented in the CDAT reference manual. The vcs module provides
access to the functionality of the VCS visualization program.

Examples of plotting data accessed from CDMS are given below, as well as
documentation for the plot routine keywords.

5.2 Examples

In the following examples, it is assumed that variable psl is dimen-
sioned (time, latitude, longitude). psl is contained in the dataset named
‘sample.xml’.

5.2.1 Example: plotting a gridded variable
 1 import cdms, vcs
 2 #
Climate Data Management System 139

Plotting CDMS data in Python

140
 3 f = cdms.open(’sample.xml’)
 4 psl = f.variables[’psl’]
 5 sample = psl[0]
 6 w=vcs.init()
 7 #
 8 w.plot(sample)
 9 f.close()

Notes:

That’s it! The axis coordinates, variable name, description, units, etc. are
obtained from variable sample.

What if the units are not explicitly defined for psl, or a different description
is desired? plot has a number of other keywords which ‘fill in’ the extra plot
information.

5.2.2 Example: using plot keywords.
w.plot(array, units=’mm/day’, file_comment=’High-frequency

reanalysis’, long_name="Sea level pressure", comment1="Sample
plot", hms="18:00:00", ymd="1978/01/01")

Note: Keyword arguments can be listed in any order.

Line Notes

 5 Get a horizontal slice, for the first timepoint.

 6 Create a VCS Canvas w.

 8 Plot the data. Because sample is a transient variable, it encapsulates
all the time, latitude, longitude, and attribute information.

 9 Close the file. This must be done after the reference to the persistent
variable psl.
Climate Data Management System

Examples
5.2.3 Example: plotting a time-latitude slice

Assuming that variable psl has domain (time,latitude,longitude), this
example selects and plots a time-latitude slice:

 1 samp = psl[:,:,0]
 2 w = vcs.init()
 3 w.plot(samp, name=’sea level pressure’)

Notes:

5.2.4 Example: plotting subsetted data

Calling the variable psl as a function reads a subset of the variable.
The result variable samp can be plotted directly:

 ...
 1 samp = psl(time=(0.0,100.0), longitude=180.0)
 2 w = vcs.init()
 3 w.plot(samp)

Line Notes

 1 samp is a slice of psl, at index 0 of the last dimension. Since samp was
obtained from the slice operator, it is a transient variable, which
includes the latitude and time information.

 3 The name keyword defines the identifier, by default the name in the
file.
Climate Data Management System 141

Plotting CDMS data in Python

142
5.3 plot method

The plot method is documented in the CDAT Reference Manual. This
section augments the documentation with a description of the optional key-
word arguments.

The general form of the plot command is:

canvas.plot(array [, args] [,key=value [, key=value [, ...]]])

where:

• canvas is a VCS Canvas object, created with the vcs.init method.

• array is a variable, masked array, or Numeric array having between two and
five dimensions. The last dimensions of the array is termed the ‘x’ dimension,
the next-to-last the ‘y’ dimension, then ‘z’, ‘t’, and ‘w’. For example, if array is
three-dimensional, the axes are (z,y,x), and if array is four-dimensional, the
axes are (t,z,y,x). (Note that the ‘t’ dimension need have no connection with
time; any spatial axis can be mapped to any plot dimension. For a graphics
method which is two-dimensional, such as boxfill, the y-axis is plotted on the
horizontal, and the x-axis on the vertical.

If array is a gridded variable on a rectangular grid, the plot function uses a box-
fill graphics method. If it is non-rectangular, the meshfill graphics method is
used.

Note that some plot keywords apply only to rectangular grids only.

• args are optional positional arguments:

args := template_name, graphics_method, graphics_name
template_name: the name of the VCS template (e.g., ‘AMIP’)
graphics_method : the VCS graphics method (‘boxfill’)
graphics_name: the name of the specific graphics method (‘default’)

See the CDAT Reference Manual and VCS Reference Manual for a
detailed description of these arguments.

• key=value, ... are optional keyword/value pairs, listed in any order. These are
defined in Table 5.1 on page 143.
Climate Data Management System

plot method
Table 5.1 plot keywords

key type value

comment1 string Comment plotted above file_comment

comment2 string Comment plotted above comment1

comment3 string Comment plotted above comment2

continents 0 or 1 if ==1, plot continental outlines (default:
plot if xaxis is longitude, yaxis is
latitude -or- xname is ’longitude’
and yname is ’latitude’

file_comment string Comment, defaults to variable.par-
ent.comment)

grid CDMS grid
object

Grid associated with the data. Defaults to
variable.getGrid()

hms string Hour, minute, second

long_name string Descriptive variable name, defaults to
variable.long_name.

missing_value same type as
array

Missing data value, defaults to vari-
able.getMissing()

name string Variable name, defaults to variable.id

time cdtime rela-
tive or abso-
lute time

time associated with the data. Example:
cdtime.reltime(30.0, “days since
1978-1-1”)

units string Data units. Defaults to variable.units
Climate Data Management System 143

Plotting CDMS data in Python

144
variable CDMS vari-
able object

Variable associated with the data. The
variable grid must have the same
shape as the data array.

xarray
([y|z|t|w]arr
ay)

1-D
Numeric
array

[rectangular grids only]

Array of coordinate values, having the
same length as the corresponding
dimension. Defaults to xaxis[:]
(y|z|t|waxis[:])

xaxis
([y|z|t|w]axi
s)

CDMS axis
object

[rectangular grids only]

Axis object. xaxis defaults to
grid.getAxis(0), yaxis defaults to
grid.getAxis(1)

xbounds
(ybounds)

2-D
Numeric
array

[rectangular grids only]

Boundary array of shape (n,2) where n is
the axis length. Defaults to
xaxis.getBounds(), or xaxis.genGe-
nericBounds() if None, similarly for
ybounds.

xname
([y|z|t|w]na
me)

string [rectangular grids only]

Axis name. Defaults to xaxis.id
([y|z|t|w]axis.id)

Table 5.1 plot keywords

key type value
Climate Data Management System

plot method
xrev (yrev) 0 or 1 If xrev (yrev) is 1, reverse the direction of
the x-axis (y-axis). Defaults to 0,
with the following exceptions:

• If the y-axis is latitude, and has decreasing
values, yrev defaults to 1

• If the y-axis is a vertical level, and has
increasing pressure levels, yrev defaults to
1.

xunits
([y|z|t|w]uni
ts)

string [rectangular grids only]

Axis units. Defaults to xaxis.units
([y|z|t|w]axis.units).

Table 5.1 plot keywords

key type value
Climate Data Management System 145

Plotting CDMS data in Python

146
 Climate Data Management System

CHAPTER 6 Climate Data Markup
Language (CDML)
6.1 Introduction

The Climate Data Markup Language (CDML) is the markup lan-
guage used to represent metadata in CDMS. CDML is based on the W3C
XML standard (http://www.w3.org). This chapter defines the syntax of
CDML. Read this section if you will be building or maintaining a CDMS
database.

XML, the eXtensible Markup Language, makes it possible to define
interoperable dialects of markup languages. The most recent version of
HTML, the Web hypertext markup language, is an XML dialect. CDML is
also an XML dialect, geared toward the representation of gridded climate
datasets. XML provides rigor to the metadata representation, ensuring that
applications can access it correctly. XML also deals with internationaliza-
tion issues, and holds forth the promise that utilities for browsing, editing,
and other common tasks will be available in the future.

CDML files have the file extension .xml or .cdml.
Climate Data Management System 147

Climate Data Markup Language (CDML)

148
6.2 Elements

A CDML document consists of a nested collection of elements. An
element is a description of the metadata associated with a CDMS object.
The form of an element is:

<tag attribute-list> element-content </tag>

or

<tag attribute-list />

where

• tag is a string which defines the type of element

• attribute-list is a blank-separated list of attribute-value pairs, of the
form:

attribute = “value”

• element-content depends on the type of element. It is either a list of ele-
ments, or text which defines the element values. For example, the content of an
axis element either is a list of axis values, or is a linear element. For datasets,
the content is the blank-separated list of elements corresponding to the axes,
grids, and variables contained in the dataset.

The CDML elements are:

Table 6.1 CDML Tags

Tag Description

attr Extra attribute

axis Coordinate axis

domain Axes on which a variable is defined

domElem Element of a variable domain

linear Linearly-spaced axis values
Climate Data Management System

Special Characters
6.3 Special Characters

XML reserves certain characters for markup. If they appear as con-
tent, they must be encoded to avoid confusion with markup:

For example, the comment

Certain “special characters”, such as <, >, and ‘, must
be encoded.

would appear in an attribute string as:

comment = “Certain "special characters", such
as <, >, and &apos, must be encoded.”

rectGrid Rectilinear Grid

variable Variable

Table 6.2 Special Character Encodings

Character Encoding

< <

> >

& &

“ "

‘ &apos

Table 6.1 CDML Tags

Tag Description
Climate Data Management System 149

Climate Data Markup Language (CDML)

150
6.4 Identifiers

In CDMS, all objects in a dataset have a unique string identifier. The
id attribute holds the value of this identifier. If the variable, axis, or grid has
a string name within a data file, then the id attribute ordinarily has this
value. Alternatively, the name of the object in a data file can be stored in the
name_in_file attribute, which can differ from the id. Datasets also have
IDs, which can be used within a larger context (databases).

An identifer must start with an alphabetic character (upper or lower case),
an underscore (_), or a colon (:). Characters after the first must be alphanu-
meric, an underscore, or colon. There is no restriction on the length of an
identifier.

6.5 CF Metadata Standard

The CF metadata standard (http://www.cgd.ucar.edu/cms/eaton/
netcdf/CF-current.htm) defines a set of conventions for usage of netCDF.
This standard is supported by CDML. The document defines names and
usage for metadata attributes. CF supersedes the GDT 1.3 standard.

6.6 CDML Syntax

The following notation is used in this section:

• Courier font is used for a syntax specification. Bold font highlights
literals.

• (R|S) denotes ‘either R or S’.

• R* denotes ‘zero or more R’.

• R+ denotes ‘one or more R’.

A CDML document consists of a prolog followed by a single dataset ele-
ment.

1. CDML-document ::= prolog dataset-element
Climate Data Management System

CDML Syntax
The prolog defines the XML version, and the Document Type Definition
(DTD), a formal specification of the document syntax. See http://
www.w3.org/TR/1998/REC-xml-19980210 for a formal definition of XML
Version 1.0.

2. prolog ::=
<?xml version="1.0"?>
<!DOCTYPE dataset SYSTEM "http://www-pcmdi.llnl.gov/
~drach/cdms/cdml.dtd">

6.6.1 Dataset Element

A dataset element describes a single dataset. The content is a list of ele-
ments corresponding to the axes, grids, and variables contained in the
dataset. Axis, variable, and grid elements can be listed in any order, and an
element ID can be used before the element is actually defined.

3. dataset-element ::= <dataset dataset-attributes>
dataset-content </dataset>

4. dataset-content ::= (axis-element | grid-element |
variable-element)* extra-attribute-element+

Table 6.3 Dataset Attributes

Attribute
Requ
ired CF GDT Notes

appendi-
ces

N N Y Version number

calendar N N Y Calendar used for encoding time
axes.

“gregorian” | “julian” | “noleap” |
“360_day” | “proleptic_gregorian” |
“standard”

Note: for the CF convention, the cal-
endar attribute is placed on the time
axis.

comment N Y Y Additional dataset information
Climate Data Management System 151

Climate Data Markup Language (CDML)

152
Notes:

• The cdms_filemap attribute describes how the dataset is partitioned into files.
The format is:

filemap ::= [varmap, varmap, ...]
varmap ::= [namelist, slicelist]
namelist ::= [name, name, ...]
slicelist ::= [indexlist, indexlist, ,,,]
indexlist ::= [time0, time1, lev0, lev1, path]
name ::= variable name
time0 ::= first index of time in the file, or ‘-’ if not split on time
time1 ::= last index of time + 1, in the file, or ‘-’ if not split on time

Conven-
tions

Y Y Y The netCDF metadata standard.

Example: “CF-1.0”

cdms_file
map

Y N N Map of partitioned axes to files. See
note below.

directory N N N Root directory of the dataset

frequency N N N Temporal frequency

history N Y Y Evolution of the data

id Y N N Dataset identifier

institution N Y Y Who made or supplied the data

produc-
tion

N N Y How the data was produced (see
source)

project N N N Project associated with the data

Example: “CMIP 2”

references N Y N Published or web-based references
that describe the data or methods used
to produce it.

source N Y N The method of production of the orig-
inal data.

title N Y N A succinct description of the data.

Table 6.3 Dataset Attributes

Attribute
Requ
ired CF GDT Notes
Climate Data Management System

CDML Syntax
lev0 ::= first index of vertical levels in the file, or ‘-’ if not split on level
lev1 ::= last index +1 of vertical levels in the file, or ‘-’ if not split on level
path ::= pathname of the file containing data for this time/level range.

The pathname is appended to the value of the directory attribute, to obtain an
absolute pathname.

6.6.2 Axis Element

An axis element describes a single coordinate axis. The content can be a
blank-separated list of axis values or a linear element. A linear element is a
representation of a linearly-spaced axis as (start, delta, length).

5. axis-element ::= <axis axis-attributes> axis-content>
</axis>

6. axis-content ::= (axis-values | linear-element)
extra-attribute-element*

7. axis-values ::= [value*]

8. linear-element ::= <linear delta=”value”
length=”Integer” start=”value”> </linear>

Table 6.4 Axis Attributes

Attribute
Requ
ired? CF GDT Notes

associate N N Y IDs of variables containing alterna-
tive sets of coordinates.

axis N Y Y The spatial type of the axis:

“T” - time

“X” - longitude

“Y” - latitude

“Z” - vertical level

“-” - not spatiotemporal
Climate Data Management System 153

Climate Data Markup Language (CDML)

154
bounds N Y Y ID of the boundary variable

calendar N Y N See dataset.calendar

climatology N Y N Range of dates to which climato-
logical statistics apply.

comment N Y N String comment

compress N Y Y Dimensions which have been com-
pressed by gathering

datatype Y N N Char, Short, Long, Float, Double,
or String

dates N Y N Range of dates to which statistics
for a typical diurnal cycle apply.

expand N N Y Coordinates prior to contraction

formula_terms N Y N Variables that correspond to the
terms in a formula.

id Y N N Axis identifier. Also the name of
the axis in the underlying file(s), if
name_in_file is undefined.

isvar N N N “true” | “false”

“false” if the axis does not have
coordinate values explicitly
defined in the underlying file(s).

Default: “true”

leap_month N Y N For a user-defined calendar, the
month which is lengthened by a
day in leap years.

leap_year N Y N An example of a leap year for a
user-defined calendar. All years
that differ from this year by a mul-
tiple of four are leap years.

length N N N Number of axis values, including
values for which no data is defined.
Cf. partition_length.

Table 6.4 Axis Attributes

Attribute
Requ
ired? CF GDT Notes
Climate Data Management System

CDML Syntax
6.6.3 partition attribute

For an axis in a dataset, the .partition attribute describes how an axis
is split across files. It is a list of the start and end indices of each axis parti-
tion.

long_name N Y Y Long description of a physical
quantity

modulo N N Y Arithmetic modulo of an axis with
circular topology.

month_lengths N Y N Length of each month in a non-
leap year for a user-defined calen-
dar.

name_in_file N N N Name of the axis in the underlying
file(s). See id.

partition N N N How the axis is split across files.

partition_lengt
h

N N N Number of axis points for which
data is actually defined. If data is
missing for some values, this will
be smaller than the length.

positive N Y Y Direction of positive for a vertical
axis

standard_name N Y N Reference to an entry in the stan-
dard name table.

topology N N Y Axis topology.

“circular” | “linear”

units Y Y Y Units of a physical quantity

weights N N N Name of the weights array

Table 6.4 Axis Attributes

Attribute
Requ
ired? CF GDT Notes
Climate Data Management System 155

Climate Data Markup Language (CDML)

156
FIGURE 4. Partitioned axis

For example, Figure 4 shows a time axis, representing the 36 months, Janu-
ary 1980 through December 1982, with December 1981 missing. The first
partition interval is (0,12), the second is (12,23), and the third is (24,36),
where the interval (i,j) represents all indices k such that i <= k < j. The .par-
tition attribute for this axis would be the list:

[0, 12, 12, 23, 24, 36]

Note that the end index of the second interval is strictly less than the start
index of the following interval. This indicates that data for that period is
missing.

6.6.4 Grid Element

A grid element describes a horizontal, latitude-longitude grid which is recti-
linear in topology,

9. grid-element ::= <rectGrid grid-attributes> extra-
attribute-element* </rectGrid>

0 1 2 ... 12 13 ... 24 25 ... 36

Ja
n 1

98
0

Feb
 19

80

M
ar

19
80

Ja
n 1

98
1

Ja
n 1

98
2

Feb
 19

81

Feb
 19

82

Ja
n ‘8

3

Index value

Coordinate value

Nov
 198

1

 23
Climate Data Management System

CDML Syntax
6.6.5 Variable Element

A variable element describes a data variable. The domain of the variable is
an ordered list of domain elements naming the axes on which the variable is
defined. A domain element is a reference to an axis or grid in the dataset.

The length of a domain element is the number of axis points for which data
can be retrieved. The partition_length is the number of points for which
data is actually defined. If data is missing, this is less than the length.

10. variable-element ::= <variable variable-attributes>
variable-content </variable>

11. variable-content ::= variable-domain extra-attribute-
element*

12. variable-domain ::= <domain> domain-element* </
domain>

Table 6.5 RectGrid Attributes

Attribute Required? GDT? Notes

id Y N Grid identifier

type Y N Grid classification

“gaussian” | “uniform” | “equalarea” |
“generic”

Default: “generic”

latitude Y N Latitude axis name

longitude Y N Longitude axis name

mask N N Name of associated mask variable

order Y N Grid ordering

“yx” | “xy”

Default: “yx”, axis order is latitude,
longitude
Climate Data Management System 157

Climate Data Markup Language (CDML)

158
13. domain-element ::= <domElem name=”axis-name”
start=”Integer” length=”Integer”
partition_length=”Integer”/>

Table 6.6 Variable Attributes

Attribute
Requi
red? CF GDT Notes

id Y N N Variable identifier. Also, the name
of the variable in the underlying
file(s), if name_in_file is unde-
fined.

add_offset N Y Y Additive offset for packing data.
See scale_factor.

associate N N Y IDs of variables containing alterna-
tive sets of coordinates

axis N N Y Spatio-temporal dimensions.

Ex: “TYX” for a variable with
domain (time, latitude, longitude)

Note: for CF, applies to axes only.

cell_methods N Y N The method used to derive data
that represents cell values, e.g.,
“maximum”, “mean”, “variance”,
etc.

comments N N N Comment string

coordinates N Y N IDs of variables containing coordi-
nate data.

datatype Y N N Char, Short, Long, Float, Double,
or String

grid_name N N N Id of the grid

grid_type N N N “gaussian” | “uniform” |
“equalarea” | “generic”

long_name N Y Y Long description of a physical
quantity.
Climate Data Management System

CDML Syntax
6.6.6 Attribute Element

Attributes which are not explicitly defined by the GDT convention are rep-
resented as extra attribute elements. Any dataset, axis, grid, or variable ele-
ment can have an extra attribute as part of its content. This representation is
also useful if the attribute value has non-blank whitespace characters (car-
riage returns, tabs, linefeeds) which are significant.

The datatype is one of: Char, Short, Long, Float, Double, or String.

14. extra-attribute-element ::= <attr name=attribute-name
datatype=”attribute-datatype”> attribute-value </
attr>

missing_value N Y Y Value used for data that are
unknown or missint.

name_in_file N N N Name of the variable in the under-
lying file(s). See id.

scale_factor N Y Y Multiplicative factor for packing
data. See add_offset.

standard_name N Y N Reference to an entry in the stan-
dard name table.

subgrid N N Y Records how data values represent
subgrid variation.

template N N N Name of the file template to use for
this variable. Overrides the dataset
value.

units N Y Y Units of a physical quantity.

valid_max N Y Y Largest valid value of a variable

valid_min N Y Y Smallest valid value of a variable

valid_range N Y Y Largest and smallest valid values
of a variable

Table 6.6 Variable Attributes

Attribute
Requi
red? CF GDT Notes
Climate Data Management System 159

Climate Data Markup Language (CDML)

160
6.7 A Sample CDML Document

Dataset ‘sample’ has two variables, and six axes.

Note:

• The file is indented for readability. This is not required; the added whitespace is
ignored.

• The dataset contains three axes and two variables. Variables u and v are func-
tions of time, latitude, and longitude.

• The global attribute cdms_filemap describes the mapping between variables and
files. The entry [[u],[[0,1,-,-,u_2000.nc],[1,2,-,-,u_2001.nc],[2,3,-
,-,u_2002.nc]] indicates that variable u is contained in file u_2000.nc for time
index 0, u_2001.nc for time index 1, etc.

<?xml version="1.0"?>
<?xml version="1.0"?>
<!DOCTYPE dataset SYSTEM "http://www-pcmdi.llnl.gov/software/cdms/cdml.dtd">
<dataset

Conventions="CF-1.0"
id ="sample"
calendar="gregorian"
directory=""
cdms_filemap="[[[u],[[0,1,-,-,u_2000.nc],[1,2,-,-,u_2001.nc],[2,3,-,-

,u_2002.nc]]],[[v],[[0,1,-,-,v_2000.nc],[1,2,-,-,v_2001.nc],[2,3,-,-
,v_2002.nc]]]]"

history="
[2002-1-7 18:21:41] /idoru/cdat/3.1/bin/cdscan -d sample -x sample.xml u_2000.nc

u_2001.nc u_2002.nc v_2000.nc v_2001.nc v_2002.nc"
>
<axis

id ="latitude"
length="16"
units="degrees_north"
datatype="Double"
>
[-90. -78. -66. -54. -42. -30. -18. -6. 6. 18. 30. 42. 54. 66.
78.

 90.]
</axis>

<axis
id ="longitude"
length="32"
units="degrees_east"
datatype="Double"
>
[0. 11.25 22.5 33.75 45. 56.25 67.5 78.75 90.

 101.25 112.5 123.75 135. 146.25 157.5 168.75 180. 191.25
 202.5 213.75 225. 236.25 247.5 258.75 270. 281.25 292.5
 303.75 315. 326.25 337.5 348.75]

</axis>
<axis
Climate Data Management System

A Sample CDML Document
id ="time"
partition="[0 1 1 2 2 3]"
calendar="gregorian"
units="days since 2000-1-1"
datatype="Double"
length="3"
name_in_file="time"
>
[0. 366. 731.]
</axis>

<variable
id ="u"
missing_value="-99.9"
units="m/s"
datatype="Double"
>
<domain

>
<domElem name="time" length="3" start="0"/>
<domElem name="latitude" length="16" start="0"/>
<domElem name="longitude" length="32" start="0"/>
</domain>

</variable>
<variable

id ="v"
missing_value="-99.9"
units="m/s"
datatype="Double"
>
<domain

>
<domElem name="time" length="3" start="0"/>
<domElem name="latitude" length="16" start="0"/>
<domElem name="longitude" length="32" start="0"/>
</domain>

</variable>
</dataset>
Climate Data Management System 161

Climate Data Markup Language (CDML)

162
 Climate Data Management System

CHAPTER 7 CDMS Utilities
7.1 cdscan: Importing datasets into CDMS

7.1.1 Overview

A dataset is a partitioned collection of files. To create a dataset, the
files must be scanned to produce a text representation of the dataset. CDMS
represents datasets as an ASCII metafile in the CDML markup language.
The file contains all metadata, together with information describing how the
dataset is partitioned into files. (Note: CDMS provides a direct interface to
individual files as well. It is not necessary to scan an individual file in order
to access it.)

For CDMS applications to work correctly, it is important that the CDML
metafile be valid. The cdscan utility generates a metafile from a collection
of data files.

CDMS assumes that there is some regularity in how datasets are partitioned:

• A variable can be partitioned (split across files) in at most two dimensions. The
partitioned dimension(s) must be either time or vertical level dimensions; vari-
ables may not be partitioned across longitude or latitude. Datasets can be parti-
Climate Data Management System 163

CDMS Utilities

164
tioned by variable as well. For example, one set of files might contain heat
fluxes, while another set contains wind speeds.

Otherwise, there is considerable flexibility in how a dataset can be parti-
tioned:

• Files can contain a single variable or all variables in the dataset.

• The time axis can have gaps.

• Horizontal grid boundary information and related information can be duplicated
across files.

• Variables can be on different grids.

• Files may be in any of the self-describing formats supported by CDMS, includ-
ing netCDF, HDF, GrADS/GRIB, and DRS.

7.1.2 cdscan Syntax

The syntax of the cdscan command is

cdscan [options] file1 file2 ...

or

cdscan [options] -f file_list

where

• file1 file2 .. is a blank-separated list of files to scan

• file_list is the name of a file containing a list of files to scan, one pathname per
line.

Output is written to standard output by default. Use the -x option to specify
an output filename.
Climate Data Management System

cdscan: Importing datasets into CDMS
Table 7.1 cdscan command options

Option Description

-a alias_file Change variable names to the aliases defined in an alias file.
Each line of the alias file consists of two blank separated
fields: variable_id alias. variable_id is the ID of the
variable in the file, and alias is the name that will be sub-
stituted for it in the output dataset. Only variables with
entries in the alias_file are renamed.

-c calendar Specify the dataset calendar attribute. One of "gregorian"
(default), "julian", "noleap", “proleptic_gregorian”,
“standard”, or "360_day".

-d dataset_id String identifier of the dataset. Should not contain blanks or
non-printing characters. Default: "none"

-e newattr Add or modify attributes of a file, variable, or axis. The
form of newattr is either:

var.attr = value

to modify a variable or attribute, or

.attr = value

to modify a global (file) attribute. In either case, value may
be quoted to preserve spaces or force the attribute to be
treated as a string. If value is not quoted and the first char-
acter is a digit, it is converted to integer or floating-point.
This option does not modify the input datafiles. See notes
and examples below.

--exclude
var,var,...

Exclude specified variables. The argument is a comma-sep-
arated list of variables containing no blanks.

Also see --include.

-f file_list File containing a list of absolute data file names, one per
line.

-h Print a help message.
Climate Data Management System 165

CDMS Utilities

166
-i time_delta Causes the time dimension to be represented as linear, pro-
ducing a more compact representation. This is useful if the
time dimension is very long. time_delta is a float or integer.
For example, if the time delta is 6 hours, and the reference
units are ‘hours since xxxx’ , set the time delta to 6. See
the -r option. See Note 2.

--include
var,var,...

Only include specified variables in the output. The argu-
ment is a comma-separated list of variables containing no
blanks.

Also see --exclude.

-j scan time as a vector dimension. Time values are listed indi-
vidually. Turns off the -i option.

-l levels Specify that the files are partitioned by vertical level. That
is, data for different vertical levels may appear in different
files. levels is a comma-separated list of levels containing
no blanks. See Note 3.

-m levelid name of the vertical level dimension. The default is the ver-
tical dimension as determined by CDMS. See Note 3.

-p template Add a file template string, for compatibility with pre-V3.0
datasets. ’cdimport -h’ describes template strings.

-q Quiet mode.

-r time_units time units of the form "units since yyyy-mm-dd
hh:mi:ss", where units is one of "year", "month",
"day", "hour", "minute", "second".

Table 7.1 cdscan command options

Option Description
Climate Data Management System

cdscan: Importing datasets into CDMS
Notes:

1. Files can be in netCDF, GrADS/GRIB, HDF, or DRS format, and can be listed
in any order. Most commonly, the files are the result of a single experiment, and
the ’partitioned’ dimension is time. The time dimension of a variable is the

-s suffix_file Append a suffix to variable names, depending on the direc-
tory containing the data file. This can be used to distinguish
variables having the same name but generated by different
models or ensemble runs. ’suffix_file’ is the name of a file
describing a mapping between directories and suffixes.
Each line consists of two blank-separated fields: direc-
tory suffix. Each file path is compared to the directories
in the suffix file. If the file path is in that directory or a sub-
directory, the corresponding suffix is appended to the vari-
able IDs in the file. If more than one such directory is found,
the first directory found is used. If no match is made, the
variable ids are not altered. Regular expressions can be
used: see the example in the Notes section.

-t timeid id of the partitioned time dimension. The default is the name
of the time dimension as determined by CDMS. See Note 1.

--time-linear
tzero,delta,unit
s[,calendar]

Override the time dimensions(s) with a linear time dimen-
sion. The arguments are comma-separated list:

• zero is the initial time point, a floating-point value.

• delta is the time delta, floating-point.

• units are time units as specified in the [-r] option.

• calendar is optional, and is specified as in the [-c] option.
If omitted, it defaults to the value specified by [-c], oth-
erwise as specified in the file.

Example: --time-linear '0,1,months since
1980,noleap'

-x xmlfile Output file name. By default, output is written to standard
output.

Table 7.1 cdscan command options

Option Description
Climate Data Management System 167

CDMS Utilities

168
coordinate variable having a name that starts with ’time’ or having an attribute
axis=’T’. If this is not the case, specify the time dimension with the -t option.
The time dimension should be in the form supported by cdtime. If this is not the
case (or to override them) use the -r option.

2. By default, the time values are listed explicitly in the output XML. This can
cause a problem if the time dimension is very long, say for 6-hourly data. To
handle this the form ’cdscan -i delta <files>’ may be used. This generates a
compact time representation of the form <start, length, delta>. An exception is
raised if the time dimension for a given file is not linear.

3. Another form of the command is ’cdscan -l lev1,lev2,..,levn <files>’. This
asserts that the dataset is partitioned in both time and vertical level dimensions.
The level dimension of a variable is the dimension having a name that starts
with "lev", or having an attribute "axis=Z". If this is not the case, set the level
name with the -m option.

4. An example of a suffix file:

/exp/pr/ncar-a _ncar-a
/exp/pr/ecm-a _ecm-a
/exp/ta/ncar-a _ncar-a
/exp/ta/ecm-a _ecm-a

For all files in directory /exp/pr/ncar-a or a subdirectory, the corresponding vari-
able ids will be appended with the suffix ’_ncar-a’. Regular expressions can be
used, as defined in the Python ’re’ module. For example, The previous example
can be replaced with the single line:

/exp/[^/]*/([^/]*) _\g<1>

Note the use of parentheses to delimit a group. The syntax \g<n> refers to the n-
th group matched in the regular expression, with the first group being n=1. The
string [^/]* matches any sequence of characters other than a forward slash.

5. Adding or modifying attributes with the -e option:

time.units = "days since 1979-1-1"

sets the units of all variables/axes to "days since 1979-1-1". Note that since this
is done before any other processing is done, it allows overriding of non-
COARDS time units.

.newattr=newvalue
Climate Data Management System

cdscan: Importing datasets into CDMS
 Set the global file attribute 'newattr' to 'newvalue'.

6. The [--time-linear] option overrides the time values in the file(s). The resulting
dimension does not have any gaps. In contrast, the [-i], [-r] options use the spec-
ified time units (from [-r]), and calendar from [-c] if specified, to convert the file
times to the new units. The resulting linear dimension may have gaps.

In either case, the files are ordered by the time values in the files.

The [--time-linear] option should be used with caution, as it is applied to all the
time dimensions found.

7.1.3 Examples
cdscan -c noleap -d test -x test.xml [uv]*.nc
cdscan -d pcmdi_6h -i 0.25 -r ’days since 1979-1-1’ *6h*.ctl

7.1.4 File Formats

Data may be represented in a variety of self-describing binary file for-
mats, including

• netCDF, the Unidata Network Common Data Format

• HDF, the NCSA Hierarchical Data Format

• GrADS/GRIB, WMO GRIB plus a GrADS control file (.ctl)
The first non-comment line of the control file must be a dset specification.

• DRS, the PCMDI legacy format.

7.1.5 Name Aliasing

A problem can occur if variables in different files are defined on dif-
ferent grids. What if the axis names are the same? CDMS requires that
within a dataset, axis and variable IDs (names) be unique. What should the
longitude axes be named in CDMS to ensure uniqueness? The answer is to
allow CDMS IDs to differ from file names.

If a variable or axis has a CDMS ID which differs from its name in the file,
it is said to have an alias. The actual name of the object in the file is stored
in the attribute name_in_file. cdscan uses this mechanism (with the -a and -
Climate Data Management System 169

CDMS Utilities

170
s options) to resolve name conflicts; a new axis or variable ID is generated,
and the name_in_file is set to the axis name in the file.

Name aliases also can be used to enforce naming standards. For data
received from an outside organization, variable names may not be recog-
nized by existing applications. Often it is simpler and safer to add an alias to
the metafile rather than rewrite the data.
Climate Data Management System

APPENDIX A CDMS Classes
Figure 1, “CDMS Classes,” on page 173 illustrates the class inherit-
ance structure of CDMS. The classes may be categorized as abstract or con-
crete. Only concrete classes are meant to be used directly. In contrast an
abstract class defines the common interface of its subclasses. For example,
the class AbstractAxis2D defines the common interface for two-dimen-
sional coordinate axes. It has concrete subclasses DatasetAxis2D,
FileAxis2D, and TransientAxis2D, which are used in applications. Abstract
classes are denoted in italics.

For many abstract classes there are three ‘flavors’ of subclass: dataset, file,
and transient. Dataset-related objects are thought of as being contained in
datasets in the sense that operations on those objects result in I/O operations
on the corresponding dataset. The same is true of file-related objects.
Objects in datasets and files are examples of persistent objects, whose state
persists after the application exits. On the other hand, transient objects live
in memory and are not persistent.

In general the concrete subclasses closely mirror the interface of the abstract
parent class. For this reason this document defines the interfaces of the
abstract classes, and only discusses a concrete class in the few cases where
Climate Data Management System 171

CDMS Classes

172
the interface has been extended. This allows applications to treat the behav-
ior of, say a dataset axis and file axis, as identical.
Climate Data Management System

FIGURE 1. CDMS Classes

APPENDIX B Version Notes
B.1 Version 4.0

CDMS version 4.0 adds support for nonrectangular grids:

1. The following grid classes were added: AbstractHorizontalGrid, AbstractCurve-
Grid, AbstractGenericGrid, DatasetCurveGrid, FileCurveGrid, TransientCurve-
Grid, DatasetGenericGrid, FileGenericGrid, and TransientGenericGrid.

2. The following axis classes were added: AbstractCoordinateAxis,
AbstractAuxAxis1D, AbstractAxis2D, DatasetAuxAxis1D, FileAuxAxis1D,
TransientAuxAxis1D, DatasetAxis2D, FileAxis2D, and TransientAxis2D.

3. The getMesh and clone methods were added for grids.

4. An interface to the SCRIP package was added.

B.2 Version 3.0 Overview

CDMS version 3.0 is a significant enhancement of previous versions.
The major changes were:

1. CDAT/CDMS was integrated with the Numerical Python masked array class
MA.MaskedVariable. The MV submodule was added as a wrapper around MA.
Climate Data Management System 174

Version Notes

175
2. Methods that read data, such as subRegion, subSlice, and the slice operations,
return instances of class TransientVariable. The plot and regrid modules were
modified to handle masked array input. The specifiers time=..., latitude=..., etc.
were added to the I/O routines.

3. The class TransientVariable was added.

4. A number of new functions were added, notably subRegion and subSlice, which
return instances of TransientVariable.

5. When a masked array is returned from a method, it is “squeezed”: singleton
dimensions are removed. In contrast, transient variables are not squeezed. I/O
functions have a squeeze option. The method setAutoReshapeMode was
removed.

6. Internal attributes are handled in the InternalAttributes class. This allows
CDMS classes to be subclassed more readily.

7. The class Variable was renamed DatasetVariable.

8. The cu module was emulated in cdms. cu and cdms methods can be mixed.

9. The code was modularized, so that Python, CDMS, and Numerical Python can
be built and installed separately. This significantly enhances the portability of
the code.

B.3 V3.0 Details

B.3.1 AbstractVariable

• Functions getDomain, getSlice, rank, regrid, setMissing, size, subRegion, and
subSlice were added.

• The functions getRegion, getSlice, getValue, and the slice operators all return an
instance of MA, a masked array. Singleton dimensions are squeezed.

• The functions subRegion and subSlice return an instance of TransientVariable.
Singleton dimensions are not squeezed.

• The xxSlice and xxRegion functions have keywords time, level, latitude, and
longitude.

• The input functions have the keyword squeeze.

• AbstractVariable inherits from class Slab. The following functions previously
available in module cu are Slab methods: getattribute, setattribute, listdimat-
tributes, getdimattribute, listall, and info.
Climate Data Management System

V3.0 Details
• AbstractVariable implements arithmetic functions, astype.

• The write function was added.

B.3.2 AbstractAxis

• The functions asComponentTime, asRelativeTime, clone, getAxisIds, getAxis-
Index, getAxisList, getAxisListIndex, mapIntervalExt were added.

• subaxis was renamed subAxis for consistency.

• Generalized wraparound was implemented, to handle multiple cycles, reversing,
and negative strides. By default, coordinate intervals are closed. The intersec-
tion options ‘n’,’e’,’b’,and ’s’ were added to the interval indicator - see map-
IntervalExt.

B.3.3 AbstractDatabase

• The function open is synonymous with openDataset.

B.3.4 Dataset

• The function open is synonymous with openDataset.

B.3.5 cdms module

• The functions asVariable, isVariable, and createVariable were added.

• The function setAutoReshapeMode was removed. It is replaced by the squeeze
option for all I/O functions.

B.3.6 CdmsFile

• The function createVariable has a keyword fill_value. The datatype may be a
Numeric/MA typecode.

• The function write was added.

B.3.7 CDMSError

• All errors are an instance of the class CDMSError.
Climate Data Management System 176

Version Notes

177
B.3.8 AbstractRectGrid

• The function createGaussianGrid was added.

B.3.9 InternalAttributes

• The class InternalAttributes was added. It has methods add_internal_attribute,
is_internal_attribute, and replace_external_attributes.

B.3.10 TransientVariable

• The class TransientVariable was added. It inherits from both AbstractVariable
and MA.

• The cdms module function createVariable returns a transient variable.

• This class does not implement the functions getPaths or getTemplate.

B.3.11 MV

• The MV submodule of cdms was added.
Climate Data Management System

APPENDIX C cu Module
The cu module is the original CDAT I/O interface. As of version 3 it
is emulated in the cdms module. It is maintained for backward compatibil-
ity.

The cu classes are Slab, corresponding to TransientVariable in CDMS, and
cuDataset, corresponding to Dataset in CDMS.

C.1 Slab
Climate Data Management System 178

cu Module

179
Table C.1 Slab Methods

Type Definition

Various getattribute(name)

Get the value of an attribute.

name is the string name of the attribute. The following special
names can always be used: ‘filename’, ‘comments’,
‘grid_name’, ‘grid_type’, ‘time_statistic’, ‘long_name’,
‘units’.

Various getdimattribute(dim, field)

Get the value of a dimension attribute.

dim is the dimension number, an integer in the range 0..rank-1.

field is a string, one of: "name", "values", "length", "units",
"weights", "bounds".

None info(flag=None, device=sys.stdout)

Print slab information.

If flag is nonzero, dimension values, weights, and bounds are
also printed.

Output is sent to device.

List listall(all=None)

Print slab information.

If all is nonzero, dimension values, weights, and bounds are
also printed.
Climate Data Management System

cuDataset
C.2 cuDataset

List listdimattributes(dim, field)

List dimension attributes.

Returns a list of string attribute names which can be input to
getdimattribute.

dim is the dimension number, an integer in the range 0..rank-1.

field is a string, one of: "name", "values", "length", "units",
"weights", "bounds".

None setattribute(name, value)

Set an attribute.

name is the string name of the attribute.

value is the value of the attribute.

Table C.2 cuDataset Methods

Type Definition

None cleardefault()

Clear the default variable name.

None default_variable(vname)

Set the default variable name.

vname is the string variable name.

Table C.1 Slab Methods

Type Definition
Climate Data Management System 180

cu Module

181
Array dimensionarray(dname, vname=None)

Values of the axis named dname.

dname is the string axis name.

vname is the string variable name. The default is the variable
name set by default_variable.

Axis dimensionobject(dname, vname=None)

Get an axis.

dname is the string name of an axis.

vname is a string variable name. The default is the variable
name set by default_variable.

Various getattribute (vname, attribute)

Get an attribute value.

vname is a string variable name.

attribute is the string attribute name.

String getdimensionunits (dname,vname=None)

Get the units for the given dimension.

dname is the string name of an axis.

vname is a string variable name. The default is the variable
name set by default_variable.

Various getglobal (attribute)

Get the value of the global attribute.

attribute is the string attribute name.

Table C.2 cuDataset Methods

Type Definition
Climate Data Management System

cuDataset
Variable getslab (vname, *args)

Read data for a variable.

vname is the string name of the variable.

args is an argument list corresponding to the dimensions of the
variable. Arguments for each dimension can be:

(1) ‘:’ or None -- select the entire dimension

(2) Ellipsis -- select entire dimensions between the ones given.
(3) a pair of successive arguments giving an interval in world
coordinates.

(4) a CDMS-style tuple of world coordinates e.g. (start, stop,
‘cc’)

List listall (vname=None, all=None)

Get info about data from the file.

vname is the string name of the variable.

If all is non-zero, dimension values, weights, and bounds are
returned as well.

List listattribute (vname=None)

Return a list of attribute names.

vname is the name of the variable. The default is the variable
name set by default_variable.

List listdimension (vname=None)

Return a list of the dimension names associated with a vari-
able.

vname is the name of the variable. The default is the variable
name set by default_variable.

List listglobal ()

Return a list of the global attribute names.

Table C.2 cuDataset Methods

Type Definition
Climate Data Management System 182

cu Module

183
List listvariable ()

Return a list of the variables in the file.

None showall (vname=None, all=None, device=sys.stdout)

Print a description of the variable.

vname is the string name of the variable.

If all is non-zero, dimension values, weights, and bounds are
returned as well.

Output is sent to device.

None showattribute (vname=None, device=sys.stdout)

Print the attributes of a variable.

vname is the string name of the variable.

Output is sent to device.

None showdimension (vname=None, device=sys.stdout)

Print the dimension names associated with a variable.

vname is the string name of the variable.

Output is sent to device.

None showglobal (device=sys.stdout)

Print the global file attributes.

Output is sent to device.

None showvariable (device=sys.stdout)

Print the list of variables in the file.

Table C.2 cuDataset Methods

Type Definition
Climate Data Management System

Index

A
arange 74
argsort 75
arrayrange 74
asarray 75
asComponentTime 48
asRelativeTime 48
assignValue

axis 44
variable 92

astype 92
asVariable 33
AuxAxis1D 42
average 76
Axis 42
Axis2D 42

C
CDML

Climate Data Markup Language 147
element 148
identifier 150
tags 148

cdms module 33
CdmsFile

as a dictionary 53
calling as a function 52

cdscan 164
cdtime 111
choose 76
clone 44, 81, 92
close 53

database 60
dataset 70

concatenate 76
connect 60
CoordinateAxis 42
copyAxis 53
copyGrid 53
count 76
Climate Data Management System 184

185
createAxis
cdmsFile 43, 54
dataset 43
transient 33, 43

createDataset 52
createEqualAreaAxis 34, 43
createGaussianAxis 34, 43
createGaussianGrid 34, 80
createGenericGrid 35, 80
createGlobalMeanGrid 35, 80
createRectGrid 80

cdmsFile 54, 80
dataset 71, 80
transient 36, 80

createUniformGrid 36, 80
createUniformLatitudeAxis 37, 44
createUniformLongitudeAxis 37, 44
createVariable 37, 54, 89, 90, 91
createVariableCopy 55
createZonalGrid 37, 80
crossSectionRegrid 93
crossSectionRegridder 124
CurveGrid 79

D
database 57
Dataset

as a dictionary 70
calling as a function 70

designateCircular 48
designateLatitude 45
designateLevel 45
designateLongitude 45
designateTime 45
DRS 169

G
GenericGrid 79
getAutoBounds 37
getAxis 71, 81, 93
getAxisIds 93
getAxisIndex 93
getAxisList 94
getAxisListIndex 94
Climate Data Management System

getBounds
axis 46
grid 82

getCalendar 46
getDestinationArea 132
getDestinationFraction 132
getDomain 95
getGrid 71, 95
getInputGrid 132
getLatitude

grid 82
variable 95

getLevel 95
getLongitude

grid 82
variable 95

getMask 83
getMesh 83
getMissing 95
getObject 66
getOrder

grid 85
variable 96

getOutputGrid 133
getPaths

dataset 71
variable 96

getSourceArea 133
getSourceFraction 133
getTime 96
getType 85
getValue

axis 46
getVariable 71
getWeights 86
GRIB 169

H
HDF 169
HorizontalGrid 78

I
id 57
isCircular 48
Climate Data Management System 186

187
isLatitude 47
isLevel 47
isLinear 48
isLongitude 47
isMaskedVariable 76
isTime 47
isVariable 38

L
len 47, 65, 97
listDatasets 60

M
mapInterval 48
mapIntervalExt 49
masked_array 74
masked_equal 76
masked_greater 76
masked_greater_equal 76
masked_less 77
masked_less_equal 77
masked_not_equal 77
masked_object 74
masked_outside 77
masked_values 74
masked_where 77
maximum 77
minimum 77

N
name alias 169
netCDF 169

O
ones 74
open 61, 69
openDataset 38, 52, 61, 69
order string 96
order2index 38
orderparse 39
outerproduct 77

P
plot method 142
Climate Data Management System

power 77
pressureRegrid 97, 124
product 77

R
rank 97
readRegridder 126
readScripGrid 55, 72
RectGrid 79
regrid 98
regrid function 129
Regridder 125
relative name 57
repeat 78
reshape 75
resize 75

S
SCRIP regridder 131

bicubic 132
search result 65
search result entry 66
searchFilter 62
searchPredicate 65
set_default_fill_value 78
setAutoBounds 39
setAxis 98
setAxisList 98
setBounds

grid 83
setClassifyGrids 39
setMask 83
setMissing 98
setType 86
size 47, 99
sort 78
subaxis 50
subGrid 87
subGridRegion 84
subRegion 99
subSlice 100
sum 78
sync

cdmsFile 55
Climate Data Management System 188

189
dataset 72

T
tag 57
take 78
toCurveGrid 85
toGenericGrid 85
transpose 78, 87
typecode

axis 47
variable 100

W
where 78
write 56
writeScripGrid 40

X
XML 147

Z
zeros 75
Climate Data Management System

	Climate Data Management System Version 4.0
	Table of Contents
	CHAPTER 1 Introduction
	1.1 Overview
	1.2 Variables
	1.3 File I/O
	1.4 Coordinate Axes
	1.5 Attributes
	1.6 Masked values
	1.7 File Variables
	1.8 Dataset Variables
	1.9 Grids
	1.9.1 Example: a curvilinear grid
	1.9.2 Example: a generic grid

	1.10 Regridding
	1.10.1 CDMS Regridder
	1.10.2 SCRIP Regridder

	1.11 Time types
	1.12 Plotting data
	1.13 Databases

	CHAPTER 2 CDMS Python Application Programming Interface
	2.1 Overview
	Table 2.1 Python types used in CDMS

	2.2 A first example
	2.3 cdms module
	Table 2.2 cdms module functions
	Table 2.3 Class Tags

	2.4 CdmsObj
	Table 2.4 Attributes common to all CDMS objects
	Table 2.5 Getting and setting attributes

	2.5 CoordinateAxis
	Table 2.6 CoordinateAxis types
	Table 2.7 CoordinateAxis Internal Attributes
	Table 2.8 Axis Constructors
	Table 2.9 CoordinateAxis Methods
	Table 2.10 Axis Methods, additional to CoordinateAxis methods
	Table 2.11 Axis Slice Operators

	2.6 CdmsFile
	Table 2.12 CdmsFile Internal Attributes
	Table 2.13 CdmsFile Constructors
	Table 2.14 CdmsFile Methods
	Table 2.15 CDMS Datatypes

	2.7 Database
	2.7.1 Overview
	Table 2.16 Database Internal Attributes
	Table 2.17 Database Constructors
	Table 2.18 Database Methods

	2.7.2 Searching a database
	Table 2.19 SearchResult Methods
	Table 2.20 ResultEntry Attributes
	Table 2.21 ResultEntry Methods

	2.7.3 Accessing data
	2.7.4 Examples of database searches

	2.8 Dataset
	Table 2.22 Dataset Internal Attributes
	Table 2.23 Dataset Constructors
	Table 2.24 Open Modes
	Table 2.25 Dataset Methods

	2.9 MV module
	Table 2.26 Variable Constructors in module MV
	Table 2.27 MV functions

	2.10 HorizontalGrid
	Table 2.28
	Table 2.29 HorizontalGrid Internal Attributes
	Table 2.30 RectGrid Constructors
	Table 2.31 HorizontalGrid Methods
	Table 2.32 RectGrid Methods, additional to HorizontalGrid Methods

	2.11 Variable
	Table 2.33 Variable Internal Attributes
	Table 2.34 Variable Constructors
	Table 2.35 Variable Methods
	Table 2.36 Variable Slice Operators
	Table 2.37 Index and Coordinate Intervals
	2.11.1 Selectors
	Table 2.38 Selector keywords

	2.11.2 Selector examples

	2.12 Examples

	CHAPTER 3 cdtime Module
	3.1 Time types
	3.2 Calendars
	3.3 Time Constructors
	Table 3.1 Time Constructors

	3.4 Relative Time
	Table 3.2 Relative Time Members

	3.5 Component Time
	Table 3.3 Component Time Members

	3.6 Time Methods
	Table 3.4 Time Methods

	CHAPTER 4 Regridding Data
	4.1 Overview
	4.1.1 CDMS horizontal regridder
	4.1.2 SCRIP horizontal regridder
	4.1.3 Pressure-level regridder
	4.1.4 Cross-section regridder

	4.2 regrid module
	4.2.1 CDMS horizontal regridder
	Table 4.1 CDMS Regridder Constructor

	4.2.2 SCRIP Regridder
	Table 4.2 SCRIP Regridder Constructor

	4.3 regridder functions
	4.3.1 CDMS regridder functions
	Table 4.3 CDMS Regridder function

	4.3.2 SCRIP Regridder functions
	Table 4.4 SCRIP Regridder functions

	4.4 Examples
	4.4.1 CDMS regridder
	4.4.2 SCRIP regridder

	CHAPTER 5 Plotting CDMS data in Python
	5.1 Overview
	5.2 Examples
	5.2.1 Example: plotting a gridded variable
	5.2.2 Example: using plot keywords.
	5.2.3 Example: plotting a time-latitude slice
	5.2.4 Example: plotting subsetted data

	5.3 plot method
	Table 5.1 plot keywords

	CHAPTER 6 Climate Data Markup Language (CDML)
	6.1 Introduction
	6.2 Elements
	Table 6.1 CDML Tags

	6.3 Special Characters
	Table 6.2 Special Character Encodings

	6.4 Identifiers
	6.5 CF Metadata Standard
	6.6 CDML Syntax
	6.6.1 Dataset Element
	Table 6.3 Dataset Attributes

	6.6.2 Axis Element
	Table 6.4 Axis Attributes

	6.6.3 partition attribute
	6.6.4 Grid Element
	Table 6.5 RectGrid Attributes

	6.6.5 Variable Element
	Table 6.6 Variable Attributes

	6.6.6 Attribute Element

	6.7 A Sample CDML Document

	CHAPTER 7 CDMS Utilities
	7.1 cdscan: Importing datasets into CDMS
	7.1.1 Overview
	7.1.2 cdscan Syntax
	Table 7.1 cdscan command options

	7.1.3 Examples
	7.1.4 File Formats
	7.1.5 Name Aliasing

	APPENDIX A CDMS Classes
	APPENDIX B Version Notes
	B.1 Version 4.0
	B.2 Version 3.0 Overview
	B.3 V3.0 Details
	B.3.1 AbstractVariable
	B.3.2 AbstractAxis
	B.3.3 AbstractDatabase
	B.3.4 Dataset
	B.3.5 cdms module
	B.3.6 CdmsFile
	B.3.7 CDMSError
	B.3.8 AbstractRectGrid
	B.3.9 InternalAttributes
	B.3.10 TransientVariable
	B.3.11 MV

	APPENDIX C cu Module
	C.1 Slab
	Table C.1 Slab Methods

	C.2 cuDataset
	Table C.2 cuDataset Methods

	Index

